Crystal Facet-Manipulated 2D Pt Nanodendrites to Achieve an Intimate Heterointerface for Hydrogen Evolution Reactions
Despite the Pt-catalyzed alkaline hydrogen evolution reaction (HER) progressing via oxophilic metal-hydroxide surface hybridization, maximizing Pt reactivity alongside operational stability is still unsatisfactory due to the lack of well-designed and optimized interface structures. Producing atomica...
Saved in:
Published in: | Journal of the American Chemical Society Vol. 144; no. 20; pp. 9033 - 9043 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
25-05-2022
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite the Pt-catalyzed alkaline hydrogen evolution reaction (HER) progressing via oxophilic metal-hydroxide surface hybridization, maximizing Pt reactivity alongside operational stability is still unsatisfactory due to the lack of well-designed and optimized interface structures. Producing atomically flat two-dimensional Pt nanodendrites (2D-PtNDs) through our 2D nanospace-confined synthesis strategy, this study tackles the insufficient interfacial contact effect during HER catalysis by realizing an area-maximized and firmly bound lateral heterointerface with NiFe-layered double hydroxide (LDH). The well-oriented {110} crystal surface exposure of Pt promotes electronic interplay that bestows strong LDH binding. The charge-relocated interfacial bond in 2D-PtND/LDH accelerates the hydrogen generation steps and achieves nearly the highest reported Pt mass activity enhancement (∼11.2 times greater than 20 wt % Pt/C) and significantly improved long-term operational stability. This work uncovers the importance of the shape and facet of Pt to create heterointerfaces that provide catalytic synergy for efficient hydrogen production. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c01589 |