Hyperbolic Deep Neural Networks: A Survey

Recently, there has been a rising surge of momentum for deep representation learning in hyperbolic spaces due to theirhigh capacity of modeling data like knowledge graphs or synonym hierarchies, possessing hierarchical structure. We refer to the model as hyperbolic deep neural network in this paper....

Full description

Saved in:
Bibliographic Details
Main Authors: Peng, Wei, Varanka, Tuomas, Mostafa, Abdelrahman, Shi, Henglin, Zhao, Guoying
Format: Journal Article
Language:English
Published: 12-01-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, there has been a rising surge of momentum for deep representation learning in hyperbolic spaces due to theirhigh capacity of modeling data like knowledge graphs or synonym hierarchies, possessing hierarchical structure. We refer to the model as hyperbolic deep neural network in this paper. Such a hyperbolic neural architecture potentially leads to drastically compact model withmuch more physical interpretability than its counterpart in Euclidean space. To stimulate future research, this paper presents acoherent and comprehensive review of the literature around the neural components in the construction of hyperbolic deep neuralnetworks, as well as the generalization of the leading deep approaches to the Hyperbolic space. It also presents current applicationsaround various machine learning tasks on several publicly available datasets, together with insightful observations and identifying openquestions and promising future directions.
DOI:10.48550/arxiv.2101.04562