Realization of a pulsed optically pumped Rb clock with a frequency stability below \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-15}$$\end{document}10-15
We present the frequency stability performances of a vapor cell Rb clock based on the pulsed optically pumping (POP) technique. The clock has been developed in the frame of a collaboration between INRIM and Leonardo SpA, aiming to realize a space-qualified POP frequency standard. The results here re...
Saved in:
Published in: | Scientific reports Vol. 13 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
10-08-2023
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the frequency stability performances of a vapor cell Rb clock based on the pulsed optically pumping (POP) technique. The clock has been developed in the frame of a collaboration between INRIM and Leonardo SpA, aiming to realize a space-qualified POP frequency standard. The results here reported were obtained with an engineered physics package, specifically designed for space applications, joint to laboratory-grade optics and electronics. The measured frequency stability expressed in terms of Allan deviation is
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.2\times 10^{-13}$$\end{document}
1.2
×
10
-
13
at 1s and achieves the value of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$6\times 10^{-16}$$\end{document}
6
×
10
-
16
for integration times of 40000 s (drift removed). This is, to our knowledge, a record result for a vapor-cell frequency standard. In the paper, we show that in order to get this result, a careful stabilization of microwave and laser pulses is required. |
---|---|
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-023-39942-5 |