Multi-scale microscopy study of 3D morphology and structure of MoNi 4 /MoO 2 @Ni electrocatalytic systems for fast water dissociation

The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XR...

Full description

Saved in:
Bibliographic Details
Published in:Micron (Oxford, England : 1993) Vol. 158; p. 103262
Main Authors: Zschech, Ehrenfried, Topal, Emre, Kutukova, Kristina, Gluch, Jürgen, Löffler, Markus, Werner, Stephan, Guttmann, Peter, Schneider, Gerd, Liao, Zhongquan, Timoshenko, Janis
Format: Journal Article
Language:English
Published: England 01-07-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XRD) and spatially resolved near-edge X-ray absorption fine structure (NEXAFS) studies. The high electrocatalytic efficiency for hydrogen evolution reaction (HER) of a novel transition-metal-based material system - MoNi electrocatalysts anchored on MoO cuboids aligned on Ni foam (MoNi /MoO @Ni) - is based on advantageous crystalline structures and chemical bonding. High-resolution TEM images and selected-area electron diffraction patterns are used to determine the crystalline structures of MoO and MoNi . Multi-scale XCT provides 3D information of the hierarchical morphology of the MoNi /MoO @Ni material system nondestructively: Micro-XCT images clearly resolve the Ni foam and the attached needle-like MoO micro cuboids. Laboratory nano-XCT shows that the MoO micro cuboids with a rectangular cross-section of 0.5 × 1 µm and a length of 10-20 µm are vertically arranged on the Ni foam. MoNi nanoparticles with a size of 20-100 nm, positioned on single MoO cuboids, were imaged using synchrotron radiation nano-XCT. The application of a deep convolutional neural network (CNN) significantly improves the reconstruction quality of the acquired data.
AbstractList The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XRD) and spatially resolved near-edge X-ray absorption fine structure (NEXAFS) studies. The high electrocatalytic efficiency for hydrogen evolution reaction (HER) of a novel transition-metal-based material system - MoNi electrocatalysts anchored on MoO cuboids aligned on Ni foam (MoNi /MoO @Ni) - is based on advantageous crystalline structures and chemical bonding. High-resolution TEM images and selected-area electron diffraction patterns are used to determine the crystalline structures of MoO and MoNi . Multi-scale XCT provides 3D information of the hierarchical morphology of the MoNi /MoO @Ni material system nondestructively: Micro-XCT images clearly resolve the Ni foam and the attached needle-like MoO micro cuboids. Laboratory nano-XCT shows that the MoO micro cuboids with a rectangular cross-section of 0.5 × 1 µm and a length of 10-20 µm are vertically arranged on the Ni foam. MoNi nanoparticles with a size of 20-100 nm, positioned on single MoO cuboids, were imaged using synchrotron radiation nano-XCT. The application of a deep convolutional neural network (CNN) significantly improves the reconstruction quality of the acquired data.
Author Topal, Emre
Guttmann, Peter
Gluch, Jürgen
Löffler, Markus
Timoshenko, Janis
Kutukova, Kristina
Zschech, Ehrenfried
Liao, Zhongquan
Werner, Stephan
Schneider, Gerd
Author_xml – sequence: 1
  givenname: Ehrenfried
  surname: Zschech
  fullname: Zschech, Ehrenfried
  email: ehrenfried.zschech@deepxscan.com
  organization: deepXscan GmbH, Dresden, Germany; Faculty of Chemistry, University of Warsaw, Warsaw, Poland. Electronic address: ehrenfried.zschech@deepxscan.com
– sequence: 2
  givenname: Emre
  surname: Topal
  fullname: Topal, Emre
  organization: Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany; Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
– sequence: 3
  givenname: Kristina
  surname: Kutukova
  fullname: Kutukova, Kristina
  organization: Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany
– sequence: 4
  givenname: Jürgen
  surname: Gluch
  fullname: Gluch, Jürgen
  organization: Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany
– sequence: 5
  givenname: Markus
  surname: Löffler
  fullname: Löffler, Markus
  organization: Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
– sequence: 6
  givenname: Stephan
  surname: Werner
  fullname: Werner, Stephan
  organization: Helmholtz-Zentrum Berlin, Berlin, Germany
– sequence: 7
  givenname: Peter
  surname: Guttmann
  fullname: Guttmann, Peter
  organization: Helmholtz-Zentrum Berlin, Berlin, Germany
– sequence: 8
  givenname: Gerd
  surname: Schneider
  fullname: Schneider, Gerd
  organization: Helmholtz-Zentrum Berlin, Berlin, Germany; Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
– sequence: 9
  givenname: Zhongquan
  surname: Liao
  fullname: Liao, Zhongquan
  organization: Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany
– sequence: 10
  givenname: Janis
  surname: Timoshenko
  fullname: Timoshenko, Janis
  organization: Interface Science Department, Fritz Haber Institute of Max Planck Society, Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35378432$$D View this record in MEDLINE/PubMed
BookMark eNqFjk1KxEAQRhtRnBn1ClIXCCbp6MSd4A9uohv3Q9upaEt3KlRVI30A7-0Iunb1-Hjf4m3M4UwzHph102_7qmuvm5XZiHzUdd10V_WxWdlLu-07267N15Cjhkq8iwgpeCbxtBQQzWMBmsDeQSJe3inSWwE3j3vF2Wtm_NEDPQXo4GKgZ2jhZj8wolcm79TFosGDFFFMAhMxTE4UPp0iwxhEyAengeZTczS5KHj2yxNz_nD_cvtYLfk14bhbOCTHZffXbf89fAMDtFEk
ContentType Journal Article
Copyright Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID NPM
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 1878-4291
ExternalDocumentID 35378432
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNEU
ABUDA
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MAGPM
MO0
N9A
NDZJH
NPM
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSU
SSZ
T5K
UNMZH
WUQ
~G-
ID FETCH-pubmed_primary_353784323
IngestDate Sat Sep 28 08:19:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalyst
NEXAFS
X-ray computed tomography
X-ray microscopy
Convolutional neural network
Morphology
TEM
Crystalline structure
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-pubmed_primary_353784323
PMID 35378432
ParticipantIDs pubmed_primary_35378432
PublicationCentury 2000
PublicationDate 2022-Jul
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-Jul
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Micron (Oxford, England : 1993)
PublicationTitleAlternate Micron
PublicationYear 2022
SSID ssj0001460
Score 4.4792395
Snippet The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline...
SourceID pubmed
SourceType Index Database
StartPage 103262
Title Multi-scale microscopy study of 3D morphology and structure of MoNi 4 /MoO 2 @Ni electrocatalytic systems for fast water dissociation
URI https://www.ncbi.nlm.nih.gov/pubmed/35378432
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4AxsSL8f02c9BT06jdpY-bCkXFqAc9EC9moSUhSkuCqPwA_7czuy1bSEj04KUpu2TD9vsy2xlmvmHsqC2DNo-8yO76MrBF5J3a0g2qdtSOOY87seNJqh2-fvTuW349FGGplCcLm7F_RRrHEGuqnP0D2pNFcQDvEXO8Iup4_RXuqqLWHuKjj60-ZdtR3clYy8jSmyGvW_0UH67RXtISsvRHAqXDpPc9SyAhGnfpg-VYx-IUB7JmOSrWMyaJVy0ArbQcrK4cvlufUvUa782gnfeKoh-SKGnTrzybPmsfksUkgmLE9xld7lj3qAopHbCL_nxk4uED1aTACvsmcfd29D56TT-ksVvJ5Ly5ehvptZqUFXBZo3LTYrDDMYmxeFZpA-2j14tn6NmUBdfq75kNJolAbeELcA_6Cm9e5Z4vsojqtM52PlVmZX5WrbCFi5uw1Zyc6niiUNfA_FszXoh6G3laYcuZGwEXGv9VVoqTNbaoG4uO8U4l9naG6-y7wAcwfADFB0i7wOtg-AAICEz4QNPEBxBwgmwAB87xwywXIOMCILBAXADFBShyYYMdNsKn2rWtd_My0BonL_k--SarJGkSbzMIXNlxuUSPl0vhBkKKwOtEnPrBO9W27-6wrTmL7M6d2WNLBuZ9VsENxgesPIxGhxkAP_yJXUs
link.rule.ids 315,782,786
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+microscopy+study+of+3D+morphology+and+structure+of+MoNi+4+%2FMoO+2+%40Ni+electrocatalytic+systems+for+fast+water+dissociation&rft.jtitle=Micron+%28Oxford%2C+England+%3A+1993%29&rft.au=Zschech%2C+Ehrenfried&rft.au=Topal%2C+Emre&rft.au=Kutukova%2C+Kristina&rft.au=Gluch%2C+J%C3%BCrgen&rft.date=2022-07-01&rft.eissn=1878-4291&rft.volume=158&rft.spage=103262&rft_id=info%3Apmid%2F35378432&rft.externalDocID=35378432