Multi-scale microscopy study of 3D morphology and structure of MoNi 4 /MoO 2 @Ni electrocatalytic systems for fast water dissociation
The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XR...
Saved in:
Published in: | Micron (Oxford, England : 1993) Vol. 158; p. 103262 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-07-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XRD) and spatially resolved near-edge X-ray absorption fine structure (NEXAFS) studies. The high electrocatalytic efficiency for hydrogen evolution reaction (HER) of a novel transition-metal-based material system - MoNi
electrocatalysts anchored on MoO
cuboids aligned on Ni foam (MoNi
/MoO
@Ni) - is based on advantageous crystalline structures and chemical bonding. High-resolution TEM images and selected-area electron diffraction patterns are used to determine the crystalline structures of MoO
and MoNi
. Multi-scale XCT provides 3D information of the hierarchical morphology of the MoNi
/MoO
@Ni material system nondestructively: Micro-XCT images clearly resolve the Ni foam and the attached needle-like MoO
micro cuboids. Laboratory nano-XCT shows that the MoO
micro cuboids with a rectangular cross-section of 0.5 × 1 µm
and a length of 10-20 µm are vertically arranged on the Ni foam. MoNi
nanoparticles with a size of 20-100 nm, positioned on single MoO
cuboids, were imaged using synchrotron radiation nano-XCT. The application of a deep convolutional neural network (CNN) significantly improves the reconstruction quality of the acquired data. |
---|---|
AbstractList | The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XRD) and spatially resolved near-edge X-ray absorption fine structure (NEXAFS) studies. The high electrocatalytic efficiency for hydrogen evolution reaction (HER) of a novel transition-metal-based material system - MoNi
electrocatalysts anchored on MoO
cuboids aligned on Ni foam (MoNi
/MoO
@Ni) - is based on advantageous crystalline structures and chemical bonding. High-resolution TEM images and selected-area electron diffraction patterns are used to determine the crystalline structures of MoO
and MoNi
. Multi-scale XCT provides 3D information of the hierarchical morphology of the MoNi
/MoO
@Ni material system nondestructively: Micro-XCT images clearly resolve the Ni foam and the attached needle-like MoO
micro cuboids. Laboratory nano-XCT shows that the MoO
micro cuboids with a rectangular cross-section of 0.5 × 1 µm
and a length of 10-20 µm are vertically arranged on the Ni foam. MoNi
nanoparticles with a size of 20-100 nm, positioned on single MoO
cuboids, were imaged using synchrotron radiation nano-XCT. The application of a deep convolutional neural network (CNN) significantly improves the reconstruction quality of the acquired data. |
Author | Topal, Emre Guttmann, Peter Gluch, Jürgen Löffler, Markus Timoshenko, Janis Kutukova, Kristina Zschech, Ehrenfried Liao, Zhongquan Werner, Stephan Schneider, Gerd |
Author_xml | – sequence: 1 givenname: Ehrenfried surname: Zschech fullname: Zschech, Ehrenfried email: ehrenfried.zschech@deepxscan.com organization: deepXscan GmbH, Dresden, Germany; Faculty of Chemistry, University of Warsaw, Warsaw, Poland. Electronic address: ehrenfried.zschech@deepxscan.com – sequence: 2 givenname: Emre surname: Topal fullname: Topal, Emre organization: Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany; Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany – sequence: 3 givenname: Kristina surname: Kutukova fullname: Kutukova, Kristina organization: Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany – sequence: 4 givenname: Jürgen surname: Gluch fullname: Gluch, Jürgen organization: Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany – sequence: 5 givenname: Markus surname: Löffler fullname: Löffler, Markus organization: Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany – sequence: 6 givenname: Stephan surname: Werner fullname: Werner, Stephan organization: Helmholtz-Zentrum Berlin, Berlin, Germany – sequence: 7 givenname: Peter surname: Guttmann fullname: Guttmann, Peter organization: Helmholtz-Zentrum Berlin, Berlin, Germany – sequence: 8 givenname: Gerd surname: Schneider fullname: Schneider, Gerd organization: Helmholtz-Zentrum Berlin, Berlin, Germany; Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany – sequence: 9 givenname: Zhongquan surname: Liao fullname: Liao, Zhongquan organization: Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany – sequence: 10 givenname: Janis surname: Timoshenko fullname: Timoshenko, Janis organization: Interface Science Department, Fritz Haber Institute of Max Planck Society, Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35378432$$D View this record in MEDLINE/PubMed |
BookMark | eNqFjk1KxEAQRhtRnBn1ClIXCCbp6MSd4A9uohv3Q9upaEt3KlRVI30A7-0Iunb1-Hjf4m3M4UwzHph102_7qmuvm5XZiHzUdd10V_WxWdlLu-07267N15Cjhkq8iwgpeCbxtBQQzWMBmsDeQSJe3inSWwE3j3vF2Wtm_NEDPQXo4GKgZ2jhZj8wolcm79TFosGDFFFMAhMxTE4UPp0iwxhEyAengeZTczS5KHj2yxNz_nD_cvtYLfk14bhbOCTHZffXbf89fAMDtFEk |
ContentType | Journal Article |
Copyright | Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | NPM |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 1878-4291 |
ExternalDocumentID | 35378432 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABNEU ABUDA ABXDB ABXRA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MAGPM MO0 N9A NDZJH NPM O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSM SSQ SSU SSZ T5K UNMZH WUQ ~G- |
ID | FETCH-pubmed_primary_353784323 |
IngestDate | Sat Sep 28 08:19:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalyst NEXAFS X-ray computed tomography X-ray microscopy Convolutional neural network Morphology TEM Crystalline structure |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-pubmed_primary_353784323 |
PMID | 35378432 |
ParticipantIDs | pubmed_primary_35378432 |
PublicationCentury | 2000 |
PublicationDate | 2022-Jul |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-Jul |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Micron (Oxford, England : 1993) |
PublicationTitleAlternate | Micron |
PublicationYear | 2022 |
SSID | ssj0001460 |
Score | 4.4792395 |
Snippet | The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 103262 |
Title | Multi-scale microscopy study of 3D morphology and structure of MoNi 4 /MoO 2 @Ni electrocatalytic systems for fast water dissociation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35378432 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4AxsSL8f02c9BT06jdpY-bCkXFqAc9EC9moSUhSkuCqPwA_7czuy1bSEj04KUpu2TD9vsy2xlmvmHsqC2DNo-8yO76MrBF5J3a0g2qdtSOOY87seNJqh2-fvTuW349FGGplCcLm7F_RRrHEGuqnP0D2pNFcQDvEXO8Iup4_RXuqqLWHuKjj60-ZdtR3clYy8jSmyGvW_0UH67RXtISsvRHAqXDpPc9SyAhGnfpg-VYx-IUB7JmOSrWMyaJVy0ArbQcrK4cvlufUvUa782gnfeKoh-SKGnTrzybPmsfksUkgmLE9xld7lj3qAopHbCL_nxk4uED1aTACvsmcfd29D56TT-ksVvJ5Ly5ehvptZqUFXBZo3LTYrDDMYmxeFZpA-2j14tn6NmUBdfq75kNJolAbeELcA_6Cm9e5Z4vsojqtM52PlVmZX5WrbCFi5uw1Zyc6niiUNfA_FszXoh6G3laYcuZGwEXGv9VVoqTNbaoG4uO8U4l9naG6-y7wAcwfADFB0i7wOtg-AAICEz4QNPEBxBwgmwAB87xwywXIOMCILBAXADFBShyYYMdNsKn2rWtd_My0BonL_k--SarJGkSbzMIXNlxuUSPl0vhBkKKwOtEnPrBO9W27-6wrTmL7M6d2WNLBuZ9VsENxgesPIxGhxkAP_yJXUs |
link.rule.ids | 315,782,786 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+microscopy+study+of+3D+morphology+and+structure+of+MoNi+4+%2FMoO+2+%40Ni+electrocatalytic+systems+for+fast+water+dissociation&rft.jtitle=Micron+%28Oxford%2C+England+%3A+1993%29&rft.au=Zschech%2C+Ehrenfried&rft.au=Topal%2C+Emre&rft.au=Kutukova%2C+Kristina&rft.au=Gluch%2C+J%C3%BCrgen&rft.date=2022-07-01&rft.eissn=1878-4291&rft.volume=158&rft.spage=103262&rft_id=info%3Apmid%2F35378432&rft.externalDocID=35378432 |