Recycle polymer characterization and adhesion modeling

Contaminants from paper product producers that adversely affect fiber yield have been collected from mills located in three North American geographic regions. Samples have been fractionated using a modified solvent extraction process and subsequently quantitatively characterized and it was found tha...

Full description

Saved in:
Bibliographic Details
Main Author: Holbery, James David
Format: Dissertation
Language:English
Published: ProQuest Dissertations & Theses 01-01-2000
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Contaminants from paper product producers that adversely affect fiber yield have been collected from mills located in three North American geographic regions. Samples have been fractionated using a modified solvent extraction process and subsequently quantitatively characterized and it was found that agglomerates were comprised of the following: approximately 30% extractable polymeric material, 25–35% fiber, 12–15% inorganic material, 15% non-extractable high molecular-weight polyethylene or cross-linked polymers, and 2–4% starch residue. Three representative polymers, paraffin, low-molecular weight polyethylene, and a commercial hot-melt adhesive were selected for further analysis to model the attractive and repulsive behavior using Scanning Probe Microscopy in an aqueous cell. Scanning force probes were characterized using an original technique utilizing a nano-indentation apparatus that is non-destructive and is accurate to within 10% for probes with force constants as low as 1 N/m. Surface force measurements were performed between a Poly (Styrene/30% Butyl Methacrylate) sphere and substrates produced from paraffin, polyethylene, and a commercial hot-melt adhesive in solutions ranging in NaF ionic concentrations from 0.001M to 1M. Reasonable theoretical agreement with experimental data has been shown between a combined model applying van der Waals force contributions using the Derjaguin approximation and electrostatic contributions as predicted by a Debye-Hückel linearization of the Poisson-Boltzmann equation utilizing Hamaker constants derived from critical surface energies determined from Zisman and Lifshitz-van der Waals energy approaches. This model has been applied to measured data and indicates the strength of adhesion for the hot-melt to be 0.14 nN while that of paraffin is 1.9 nN and polyethylene 2.8 nN. Paraffin and polyethylene are 13.5 and 20 times greater in attraction than the hot-melt adhesive. Hot-melt adhesive repulsion is predicted to be 220 pN while for paraffin it is 9.1 nN and polyethylene 12.2 nN, a factor of 41 and 55 greater for paraffin and polyethylene, respectively. Decay lengths for repulsion is fit to be 2.3 nm for hotmelt indicating, approximately one-third that of paraffin and polyethylene. Johnson-Kendall-Roberts contact mechanic theory for viscoelastic materials has been applied with reasonable accuracy, particularly in experiments performed in solutions, to model the approach snap-in magnitude and detachment forces between sphere and substrate. Two representative commercial agglomeration formulations have been analyzed to determine the impact on adhesion and detachment forces although at room temperature, no measurable effect was identified.
ISBN:9780599817265
0599817267