Bespoke Processors for Embedded Systems and Secure Multi-Party Computation
With transistor scaling nearing atomic dimensions and leakage power dissipation imposing strict energy limitations, it has become increasingly difficult to improve energy efficiency in modern processors without sacrificing performance and functionality. One way to avoid this tradeoff and reduce ener...
Saved in:
Main Author: | |
---|---|
Format: | Dissertation |
Language: | English |
Published: |
ProQuest Dissertations & Theses
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | With transistor scaling nearing atomic dimensions and leakage power dissipation imposing strict energy limitations, it has become increasingly difficult to improve energy efficiency in modern processors without sacrificing performance and functionality. One way to avoid this tradeoff and reduce energy without reducing performance or functionality is to take a cue from application behavior and eliminate energy in areas that will not impact application performance. This approach is especially relevant in embedded systems, which often have ultra-low power and energy requirements and typically run a single application over and over throughout their operational lifetime. In such processors, application behavior can be effectively characterized and leveraged to identify opportunities for “free” energy savings. We find that in addition to instruction-level sequencing, constraints imposed by program-level semantics can be used to automate processor customization and further improve energy efficiency. This dissertation describes automated techniques to identify, form, propagate, and enforce application-based constraints in gate-level simulation to reveal opportunities to optimize a processor at the design level. While this can significantly improve energy efficiency, if the goal is truly to maximize energy efficiency, it is important to consider not only design-level optimizations but also architectural optimizations. That being said, architectural optimization presents several challenges. First, the symbolic simulation tool used to characterize gate-level behavior of an application must be written anew for each new architecture. Given the expansiveness of the architectural parameter space, this is not feasible. To overcome this barrier, we developed a generic symbolic simulation tool that can handle any design, technology, or architecture, making it possible to explore application-specific architectural optimizations. However, exploring each parameter variation still requires synthesizing a new design and performing application-specific optimizations, which again becomes infeasible due to the large architecture parameter space. Given the wide usage of Machine Learning (ML) for effective design space exploration, we sought the aid of ML to efficiently explore the architectural parameter space. We built a tool that takes into account the impacts of architectural optimizations on an application and predicts the architectural parameters that result in near-optimal energy efficiency for an application. This dissertation explores the objective, training, and inference of the ML model in detail.Bespoke processors are tailored for a particular application and provide significantly greater energy efficiency than a general-purpose architecture executing that application. Given the paramount importance of data, privacy, and security in today’s data-driven landscape, we have tailored a bespoke domain-specific processor for Secure Multi-Party Computation (MPC). The MPC computing paradigm is fundamentally different than traditional general-purpose computing; it allows multiple parties to perform collaborative computations on shared data without revealing any of the private data that they own, demonstrating benefits in several application domains including machine learning, data analytics, and privacy preservation. Our bespoke MPC architecture encompasses a complete end-to-end solution, including the compiler and assembler, a new ISA, and the processor architecture. Our bespoke processor architecture addresses the bottlenecks of existing MPC systems and improves efficiency significantly, enabling the use of MPC in new applications where overheads were previously prohibitive. |
---|---|
AbstractList | With transistor scaling nearing atomic dimensions and leakage power dissipation imposing strict energy limitations, it has become increasingly difficult to improve energy efficiency in modern processors without sacrificing performance and functionality. One way to avoid this tradeoff and reduce energy without reducing performance or functionality is to take a cue from application behavior and eliminate energy in areas that will not impact application performance. This approach is especially relevant in embedded systems, which often have ultra-low power and energy requirements and typically run a single application over and over throughout their operational lifetime. In such processors, application behavior can be effectively characterized and leveraged to identify opportunities for “free” energy savings. We find that in addition to instruction-level sequencing, constraints imposed by program-level semantics can be used to automate processor customization and further improve energy efficiency. This dissertation describes automated techniques to identify, form, propagate, and enforce application-based constraints in gate-level simulation to reveal opportunities to optimize a processor at the design level. While this can significantly improve energy efficiency, if the goal is truly to maximize energy efficiency, it is important to consider not only design-level optimizations but also architectural optimizations. That being said, architectural optimization presents several challenges. First, the symbolic simulation tool used to characterize gate-level behavior of an application must be written anew for each new architecture. Given the expansiveness of the architectural parameter space, this is not feasible. To overcome this barrier, we developed a generic symbolic simulation tool that can handle any design, technology, or architecture, making it possible to explore application-specific architectural optimizations. However, exploring each parameter variation still requires synthesizing a new design and performing application-specific optimizations, which again becomes infeasible due to the large architecture parameter space. Given the wide usage of Machine Learning (ML) for effective design space exploration, we sought the aid of ML to efficiently explore the architectural parameter space. We built a tool that takes into account the impacts of architectural optimizations on an application and predicts the architectural parameters that result in near-optimal energy efficiency for an application. This dissertation explores the objective, training, and inference of the ML model in detail.Bespoke processors are tailored for a particular application and provide significantly greater energy efficiency than a general-purpose architecture executing that application. Given the paramount importance of data, privacy, and security in today’s data-driven landscape, we have tailored a bespoke domain-specific processor for Secure Multi-Party Computation (MPC). The MPC computing paradigm is fundamentally different than traditional general-purpose computing; it allows multiple parties to perform collaborative computations on shared data without revealing any of the private data that they own, demonstrating benefits in several application domains including machine learning, data analytics, and privacy preservation. Our bespoke MPC architecture encompasses a complete end-to-end solution, including the compiler and assembler, a new ISA, and the processor architecture. Our bespoke processor architecture addresses the bottlenecks of existing MPC systems and improves efficiency significantly, enabling the use of MPC in new applications where overheads were previously prohibitive. |
Author | Hegde, Shashank |
Author_xml | – sequence: 1 givenname: Shashank surname: Hegde fullname: Hegde, Shashank |
BookMark | eNqNissKgkAUQAcq6OU_DLQWJkfN2SZGBIFQe_FxBUvn2tyZhX-fiz6g1TlwzpYtNWpYME-dVCITIVUUqWjNPKKuEkIoKUUYbNjtDDTiG3husAYiNMRbNDwbKmgaaPhjIgsD8VLPDrUzwO-ut52fl8ZOPMVhdLa0Heo9W7VlT-D9uGOHS_ZMr_5o8OOAbPFCZ_SciiCJ1VGFcRDJ_64vFMc_1g |
ContentType | Dissertation |
Copyright | Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works. |
Copyright_xml | – notice: Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works. |
DBID | 053 0BH CBPLH EU9 G20 M8- OK5 PQEST PQQKQ PQUKI |
DatabaseName | Dissertations & Theses Europe Full Text: Science & Technology ProQuest Dissertations and Theses Professional ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection ProQuest Dissertations & Theses A&I ProQuest Dissertations & Theses Global ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection Dissertations & Theses @ Big Ten Academic Alliance ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | Dissertations & Theses Europe Full Text: Science & Technology ProQuest One Academic UKI Edition ProQuest One Academic Eastern Edition Dissertations & Theses @ CIC Institutions ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection ProQuest Dissertations and Theses Professional ProQuest One Academic ProQuest Dissertations & Theses A&I ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection ProQuest Dissertations & Theses Global |
DatabaseTitleList | Dissertations & Theses Europe Full Text: Science & Technology |
Database_xml | – sequence: 1 dbid: G20 name: ProQuest Dissertations & Theses Global url: https://www.proquest.com/pqdtglobal1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
Genre | Dissertation/Thesis |
GroupedDBID | 053 0BH 8R4 8R5 CBPLH EU9 G20 M8- OK5 PQEST PQQKQ PQUKI Q2X |
ID | FETCH-proquest_journals_28691946253 |
IEDL.DBID | G20 |
ISBN | 9798380395595 |
IngestDate | Thu Oct 10 19:18:50 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_28691946253 |
PQID | 2869194625 |
PQPubID | 18750 |
ParticipantIDs | proquest_journals_2869194625 |
PublicationCentury | 2000 |
PublicationDate | 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
Publisher | ProQuest Dissertations & Theses |
Publisher_xml | – name: ProQuest Dissertations & Theses |
SSID | ssib000933042 |
Score | 4.0522494 |
Snippet | With transistor scaling nearing atomic dimensions and leakage power dissipation imposing strict energy limitations, it has become increasingly difficult to... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Computer Engineering Computer science |
Title | Bespoke Processors for Embedded Systems and Secure Multi-Party Computation |
URI | https://www.proquest.com/docview/2869194625 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5svYhCfeKjSkCvwV03myYXBe3W4kEEPXgrm2ZyEXe1aw_-ezPpBgtCL94CgcnATCaTeX0AF7lDaWwpuRAu5yKThpdOG57YXLjSeL0O2IDj58HjqxoWNCbnOvbCUFlltInBUNt6SjHyyysltf9we3f95uOTE2oUZVdbCI0OrKep1FTSd7_s_sTf-pYeaJWpJKN5a_kfsxveklHvv1xsw-ZwKYm-A2tY7UIvwjOw9rbuwcMt1b--IWubAepZw7yLyop3g97cWNZOK2dl5dcUd0cW-nH5k9enb7agGA7Zh_NR8XI35pHdSauDzeSX1-wAulVd4SEwTNAoeqGkdQKdK2WaanReRjjFXOER9FdROl69fQIbBMe-KKXqQ_drNsdT6DR2fhYk8wP5taAZ |
link.rule.ids | 312,782,786,787,11655,11695,34254,34256,44056,74579,79370 |
linkProvider | ProQuest |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5sPSgK9YmPqgG9BrfdbJq9KGi3rlqLYA_elk0zuYi72rUH_71JmsWC0Iu3QGAyMJPJZF4fwEWkkUuVc8qYjigLuaS5jiUNVMR0Lo1eO2zA9KU3ehX9xI7Juap7YWxZZW0TnaFW5cTGyC-7gsfmw23c9euPT2pRo2x21UNoNGCVGc_DavjdovtT_9Y3414sQhGEdt5a9Mfsurdk0PovF1uw0V9Iom_DChY70KrhGYi_rbvwcGPrX9-Q-GaAcloR46KS5F2iMTeK-GnlJC_M2sbdkbh-XPps9OmbzCm6Q_bgfJCMb1Nas5t5HayyX17DfWgWZYEHQDBAKewLxZVmqHXOO50YtZERTjASeAjtZZSOlm-fwVo6fhpmw_vR4zGsW2j2ebiiDc2v6QxPoFGp2amT0g-ZJqL7 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5sBRGF-sRH1YBeQ1s3yWZPgu6utUop6MHbsmkmF3FXu_bgvzfZZrEg9OQtEEiGZDKvzMwHcMUNCqVzQRkznLJAKJqbSNG-5szkyvJ1jQ04fA7HrzJOXJucUVML49IqG5lYC2pdTl2MvHctRWQdbmuu94xPi5jE6c3HJ3UIUu6n1cNptGA9ZDx0HH6_bAo1nvt2FEYykP3A9V7jf0RwrVfSzn9StANb8dLn-i6sYbEHnQa2gfhXvA-jW5cX-4bEFwmUs4pY05Uk7wqtGNLEdzEneWHHLh6PpK7TpRPLZ99ksWK9yQFcpsnL3ZA2pGeeN6vsl-7gENpFWeAREOyjkk5zCW0YGpOLwSBCY-8Op8glHkN31Uonq6cvYMMeTfb0MH48hU2H2L6IYnSh_TWb4xm0Kj0_ry_sB34Pq8Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=Bespoke+Processors+for+Embedded+Systems+and+Secure+Multi-Party+Computation&rft.DBID=053%3B0BH%3BCBPLH%3BEU9%3BG20%3BM8-%3BOK5%3BPQEST%3BPQQKQ%3BPQUKI&rft.PQPubID=18750&rft.au=Hegde%2C+Shashank&rft.date=2023-01-01&rft.pub=ProQuest+Dissertations+%26+Theses&rft.isbn=9798380395595&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798380395595/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798380395595/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798380395595/sc.gif&client=summon&freeimage=true |