Integrable Vortex Dynamics and Complex Burgers' Equation

Integrable dynamical models of the point magnetic vortex interactions in the plane are studied. Reformulating the Euler equations for vorticity in the Helmholtz form, the Hamiltonian and Lax representations are found. Reduction of these equations for the point vortices to the Kirchho equations, and...

Full description

Saved in:
Bibliographic Details
Main Author: Gürkan, Zeynep nihan
Format: Dissertation
Language:English
Published: ProQuest Dissertations & Theses 01-01-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Integrable dynamical models of the point magnetic vortex interactions in the plane are studied. Reformulating the Euler equations for vorticity in the Helmholtz form, the Hamiltonian and Lax representations are found. Reduction of these equations for the point vortices to the Kirchho equations, and non-integrability of the system of N ≥4 hydrodynamical vortices are discussed.As an integrable model of planar motion with given vorticity for the stationary and its solutions are given. For non-stationary planar vortex diffusion and exactly solvable Initial Value Problem for the one dimensional Burgers equation are solved.By the complexied Cole-Hopf transformation, the complex Burgers equation with integrable N vortex dynamics is introduced and linearization of this equation in terms of the complex Schr odinger equation is found.This allows us to construct N vortex congurations in terms of the complex Hermite polynomials, the vortex chain lattices and study their mutual dynamics. Mapping of our vortex problem to N-particle problem, the complexied Calogero-Moser system, showing its integrability and Hamiltonian structure is given. As an applicaton of the general results, we consider the problem of magnetic vortices in a magnetic fluid model. The holomorphic reduction of topological magnetic system to the linear complex Schrodinger equation, allows us to apply all results on integrable vortex dynamics in the complex Burgers equation to the magnetic vortex evolution, including magnetic vortex lattices and the bound states of vortices.
AbstractList Integrable dynamical models of the point magnetic vortex interactions in the plane are studied. Reformulating the Euler equations for vorticity in the Helmholtz form, the Hamiltonian and Lax representations are found. Reduction of these equations for the point vortices to the Kirchho equations, and non-integrability of the system of N ≥4 hydrodynamical vortices are discussed.As an integrable model of planar motion with given vorticity for the stationary and its solutions are given. For non-stationary planar vortex diffusion and exactly solvable Initial Value Problem for the one dimensional Burgers equation are solved.By the complexied Cole-Hopf transformation, the complex Burgers equation with integrable N vortex dynamics is introduced and linearization of this equation in terms of the complex Schr odinger equation is found.This allows us to construct N vortex congurations in terms of the complex Hermite polynomials, the vortex chain lattices and study their mutual dynamics. Mapping of our vortex problem to N-particle problem, the complexied Calogero-Moser system, showing its integrability and Hamiltonian structure is given. As an applicaton of the general results, we consider the problem of magnetic vortices in a magnetic fluid model. The holomorphic reduction of topological magnetic system to the linear complex Schrodinger equation, allows us to apply all results on integrable vortex dynamics in the complex Burgers equation to the magnetic vortex evolution, including magnetic vortex lattices and the bound states of vortices.
Author Gürkan, Zeynep nihan
Author_xml – sequence: 1
  givenname: Zeynep
  surname: Gürkan
  middlename: nihan
  fullname: Gürkan, Zeynep nihan
BookMark eNrjYmDJy89LZWbgtTS3tDA1MAUiExNDTgYLz7yS1PSixKScVIWw_KKS1AoFl8q8xNzM5GKFxLwUBef83IIcoKBTaVF6alGxuoJrYWliSWZ-Hg8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tygNKxRuZmhuZGRgaGRkbE6cKALQgNRA
ContentType Dissertation
Copyright Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Copyright_xml – notice: Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
DBID 053
0BH
CBPLH
EU9
G20
M8-
PQEST
PQQKQ
PQUKI
DatabaseName Dissertations & Theses Europe Full Text: Science & Technology
ProQuest Dissertations and Theses Professional
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations & Theses A&I
ProQuest Dissertations & Theses Global
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle Dissertations & Theses Europe Full Text: Science & Technology
ProQuest One Academic UKI Edition
ProQuest One Academic Eastern Edition
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations and Theses Professional
ProQuest One Academic
ProQuest Dissertations & Theses A&I
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest Dissertations & Theses Global
DatabaseTitleList Dissertations & Theses Europe Full Text: Science & Technology
Database_xml – sequence: 1
  dbid: G20
  name: ProQuest Dissertations & Theses Global
  url: https://www.proquest.com/pqdtglobal1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
Genre Dissertation/Thesis
GroupedDBID 053
0BH
CBPLH
EU9
G20
M8-
PQEST
PQQKQ
PQUKI
ID FETCH-proquest_journals_25726012233
IEDL.DBID G20
ISBN 9798505505441
IngestDate Thu Oct 10 18:41:32 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_25726012233
PQID 2572601223
PQPubID 2026366
ParticipantIDs proquest_journals_2572601223
PublicationCentury 2000
PublicationDate 20050101
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – month: 01
  year: 2005
  text: 20050101
  day: 01
PublicationDecade 2000
PublicationYear 2005
Publisher ProQuest Dissertations & Theses
Publisher_xml – name: ProQuest Dissertations & Theses
Score 2.8852766
Snippet Integrable dynamical models of the point magnetic vortex interactions in the plane are studied. Reformulating the Euler equations for vorticity in the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Atomic physics
Atoms & subatomic particles
Electric fields
Integrals
Mathematical models
Mathematics
Physics
Polynomials
Superfluidity
System theory
Vortices
Title Integrable Vortex Dynamics and Complex Burgers' Equation
URI https://www.proquest.com/docview/2572601223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTYytTBKs0zRTbFMNNE1sTA10E0ySTHRNU1KTDU2TU42N00EDQ14BJv7RVi4uIKOybGD7YUBLauElYnggjolPxk0Rq4PTFqg06-AtZl9QaEu6NYo0Owq9AoNZgZWQ0MzS9CSPncjyElOlkBrQa1vExNDjGIWXHe4CVBqqyADjwvSpLkQA1NqnjADty_8vNViYQZ28ELO5GIRBgtPyPkPSTmpCmGghbQVCi6QS-eLFRLzUhRA-T8HKOgE3g5drK7gWgg57FuUQdnNNcTZQxfmwnhoMiuORzjPWIyBJS8_L1WCQcE4xSLFKBnYlUsF9XvTQNdPJScbmqaYmKZZJJpaGkgyyOAzSQq_tDQDF_j0UvAohAwDS0lRaaosA3NxSqkcOPABZ32U4Q
link.rule.ids 312,782,786,787,11655,11695,34254,34256,44056,74579,79370
linkProvider ProQuest
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTYytTBKs0zRTbFMNNE1sTA10E0ySTHRNU1KTDU2TU42N00EDQ14BJv7RVi4uIKOybGD7YUBLauElYnggjolPxk0Rq4PTFqg06-AtZl9QaEu6NYo0Owq9AoNZgZWE2DLA5TC3Y0gJzlZAq0Ftb5NTAwxillw3eEmQKmtggw8LkiT5kIMTKl5wgzcvvDzVouFGdjBCzmTi0UYLDwh5z8k5aQqhIEW0lYouEAunS9WSMxLUQDl_xygoBN4O3SxuoJrIeSwb1EGZTfXEGcPXZgL46HJrDge4TxjMQaWvPy8VAkGBeMUixSjZGBXLhXU700DXT-VnGxommJimmaRaGppIMkgg88kKfzS8gycHiG-PvE-nn7e0gxc4JNMwSMSMgwsJUWlqbIMzMUppXLgiAAAgUWXyA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH-4iaIe1Kn4MTWg4ClsaxOangRt6-bHEBTxVtokPY3OGQf--ealrQrCTl4TCI_k8Xt5X78HcC49LrwiVFSFGaNM8D7NmWKU55n2uZQBzzA0MHwKxq8iipEm57bphcGyygYTHVCrqcQYec-qFrJfWWvWK-qyiMcouXybUZwghZnWepxGC5YDxgPU8BuvYnUKrQj4E2ds8AdynR1JNv9Tgi3YiH4l07dhSZcdWH_45mE1HVhxBZ7S7IAYVbwQ-USTFyyw_SRRNYzekKxUBHFhYhevXJu0uSDxrCIB34WzJH6-HtJG2rRWP5P-iOrvQbuclnofiK-E8qR18TT6wwWOpZJywBXjhch42D-A7qKTDhdvn8KqvY30fjS-O4I1R3DqAhVdaH-8z_UxtIyan7g3-QJ-F6CT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=Integrable+Vortex+Dynamics+and+Complex+Burgers%27+Equation&rft.DBID=053%3B0BH%3BCBPLH%3BEU9%3BG20%3BM8-%3BPQEST%3BPQQKQ%3BPQUKI&rft.PQPubID=2026366&rft.au=G%C3%BCrkan%2C+Zeynep+nihan&rft.date=2005-01-01&rft.pub=ProQuest+Dissertations+%26+Theses&rft.isbn=9798505505441&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798505505441/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798505505441/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798505505441/sc.gif&client=summon&freeimage=true