Observation of the Λ b 0 → χ c 1 \[ {\Lambda}_{\mathrm{b}}^0\to {\upchi}_{\mathrm{c}1} \] (3872) pK− decay
Using proton-proton collision data, collected with the LHCb detector and corresponding to 1.0, 2.0 and 1.9 fb−1 of integrated luminosity at the centre-of-mass energies of 7, 8, and 13 TeV, respectively, the decay Λb0→χc1\[ {\Lambda}_{\mathrm{b}}^0\to {\upchi}_{\mathrm{c}1} \](3872)pK− with χc1(3872)...
Saved in:
Published in: | The journal of high energy physics Vol. 2019; no. 9; pp. 1 - 20 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Heidelberg
Springer Nature B.V
01-09-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using proton-proton collision data, collected with the LHCb detector and corresponding to 1.0, 2.0 and 1.9 fb−1 of integrated luminosity at the centre-of-mass energies of 7, 8, and 13 TeV, respectively, the decay Λb0→χc1\[ {\Lambda}_{\mathrm{b}}^0\to {\upchi}_{\mathrm{c}1} \](3872)pK− with χc1(3872) → J/ψ π+π− is observed for the first time. The significance of the observed signal is in excess of seven standard deviations. It is found that (58 ± 15)% of the decays proceed via the two-body intermediate state χc1(3872)Λ(1520). The branching fraction with respect to that of the Λb0\[ {\Lambda}_{\mathrm{b}}^0 \] → ψ(2S)pK− decay mode, where the ψ(2S) meson is reconstructed in the J/ψ π+π− final state, is measured to be:βΛb0→χc13872pK−βΛb0→ψ2SpK−×βχc13872→J/ψπ+π−βψ2S→J/ψπ+π−=5.4±1.1±0.2×10−2,\[ \frac{\beta \left({\Lambda}_{\mathrm{b}}^0\to {\upchi}_{\mathrm{c}1}(3872){\mathrm{pK}}^{-}\right)}{\beta \left({\Lambda}_{\mathrm{b}}^0\to \uppsi \left(2\mathrm{S}\right){\mathrm{pK}}^{-}\right)}\times \frac{\beta \left({\upchi}_{\mathrm{c}1}(3872)\to \mathrm{J}/\uppsi {\uppi}^{+}{\uppi}^{-}\right)}{\beta \left(\uppsi \left(2\mathrm{S}\right)\to \mathrm{J}/\uppsi {\uppi}^{+}{\uppi}^{-}\right)}=\left(5.4\pm 1.1\pm 0.2\right)\times {10}^{-2}, \]where the first uncertainty is statistical and the second is systematic. |
---|---|
ISSN: | 1029-8479 |
DOI: | 10.1007/JHEP09(2019)028 |