Synthesis of Autoinducer 2 by the Lyne Disease Spirochete, Borrelia burgdorferi
Defining the metabolic capabilities and regulatory mechanisms controlling gene expression is a valuable step in understanding the pathogenic properties of infectious agents such as Borrelia burgdorferi. The present studies demonstrated that B. burgdorferi encodes functional Pfs and LuxS enzymes for...
Saved in:
Published in: | Journal of bacteriology Vol. 187; no. 9; p. 3079 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
American Society for Microbiology
01-05-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Defining the metabolic capabilities and regulatory mechanisms controlling gene expression is a valuable step in understanding the pathogenic properties of infectious agents such as Borrelia burgdorferi. The present studies demonstrated that B. burgdorferi encodes functional Pfs and LuxS enzymes for the breakdown of toxic products of methylation reactions. Consistent with those observations, B. burgdorferi was shown to synthesize the end product 4,5-dihydroxy-2,3-pentanedione (DPD) during laboratory cultivation. DPD undergoes spontaneous rearrangements to produce a class of pheromones collectively named autoinducer 2 (AI-2). Addition of in vitro-synthesized DPD to cultured B. burgdorferi resulted in differential expression of a distinct subset of proteins, including the outer surface lipoprotein VlsE. Although many bacteria can utilize the other LuxS product, homocysteine, for regeneration of methionine, B. burgdorferi was found to lack such ability. It is hypothesized that B. burgdorferi produces LuxS for the express purpose of synthesizing DPD and utilizes a form of that molecule as an AI-2 pheromone to control gene expression. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0021-9193 1098-5530 |