The Role of GPR55 in Neural Stem Cell Proliferation, Differentiation, and Immune Responses to Chronic, Systemic Inflammation
The cannabinoid system exerts functional regulation of neural stem cell (NSC) self-renewal, proliferation, and differentiation during both homeostatic and pathologic conditions. Recent evidence suggests that cannabinoid signaling is neuroprotective against reduction in NSC proliferation and neurogen...
Saved in:
Main Author: | |
---|---|
Format: | Dissertation |
Language: | English |
Published: |
ProQuest Dissertations & Theses
01-01-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The cannabinoid system exerts functional regulation of neural stem cell (NSC) self-renewal, proliferation, and differentiation during both homeostatic and pathologic conditions. Recent evidence suggests that cannabinoid signaling is neuroprotective against reduction in NSC proliferation and neurogenesis caused by a multitude of conditions including injury due to HIV-1 associated neurotoxic proteins, neuroinflammation, and stroke. Yet not all effects of cannabinoids or cannabinoid-like compounds on neurogenesis can be attributed to signaling through either of the classical cannabinoid receptors CB1 or CB2. The recently de-orphaned GPR55 is targeted by numerous cannabinoid compounds suggesting GPR55 may be causing these aberrant effects. Activation of GPR55 has shown immune-modulatory effects outside the central nervous system (CNS) and anti-inflammatory actions on microglia, the resident immune cells within the CNS. New evidence has confirmed that both human and murine NSCs express functional levels of GPR55 yet the effects that GPR55 activation has on adult neurogenesis or NSC responses to inflammation has not been elucidated. In the present study we sought to determine the role GPR55 signaling has on NSC proliferation and neurogenesis as well as possible neuroprotective mechanisms within the NSC pool in response to inflammatory insult. Activation of GPR55 increased human NSC proliferation in vitro as assessed by BrdU incorporation and flow cytometry. Neuronal differentiation was also upregulated by signaling through GPR55 under homeostatic conditions in both human and murine NSC samples. Expression of NSC differentiation markers (nestin, sox2, GFAP, S100b, DCX, βIII-tubulin) in vitro was determined by immunohistochemistry, qPCR, and flow cytometry. in vivo, C57BL/6 and GPR55-/- mice were administered the GPR55 agonist O-1602 (4 μg/kg/day) directly into the left hippocampus via stainless steel cannula connected to an osmotic mini-pump for a continuous 14 days. O-1602 treatment increased hippocampal NSC proliferation, survival, and immature neuron formation as compared to vehicle treated animals. These results were determined to be dependent on GPR55 activation asGPR55-/- animals did not show any response to agonist treatment. Interestingly,GPR55 -/- mice displayed significantly reduced rates of hippocampal NSC proliferation and neuroblast formation as compared to C57BL/6 animals. Chronic production of inflammatory mediators, such as IL-1b seen in neuroinflammation, to NSCs is known to reduce proliferation rates and attenuate neurogenesis both in vitro and in vivo. Addition of GPR55 agonists to IL-1b (10 ng/mL) treated human and murine NSC samples in vitro protected against reductions in neuron formation as assessed by immunohistochemistry and flow cytometry. Moreover, inflammatory cytokine receptor mRNA expression was down regulated by GPR55 activation in a neuroprotective manner. To determine inflammatory responses in vivo, we treated C57BL/6 andGPR55-/- mice with LPS (0.2 mg/kg/day) continuously for 14 days via osmotic mini-pump. Reductions in NSC survival (as determined by BrdU incorporation), immature neurons, and neuroblast formation due to LPS were attenuated by concurrent direct intrahippocampal administration of the GPR55 agonist, O-1602 (4μg/kg/day) in C57BL/6 mice but not inGPR55 -/-mice. Neuroprotection by O-1602 treatment was not found to be microglia dependent as microglia activation was not altered by agonist administration. Molecular analysis of the hippocampal region showed a suppressed ability to regulate immune responses byGPR55-/- animals manifesting in a prolonged inflammatory response (IL-1β, IL-6, TNFα) after chronic, systemic inflammation as compared to C57BL/6 animals. Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult. |
---|---|
ISBN: | 9780438800663 0438800664 |