Three Applications of Linear Dimension Reduction

Linear Dimension Reduction (LDR) has many uses in engineering, business, medicine, economics, data science and others. LDR can be employed when observations are recorded with many correlated features to reduce the number of features upon which statistical inference may be necessary. Some of the bene...

Full description

Saved in:
Bibliographic Details
Main Author: Odom, Gabriel J
Format: Dissertation
Language:English
Published: ProQuest Dissertations & Theses 01-01-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Linear Dimension Reduction (LDR) has many uses in engineering, business, medicine, economics, data science and others. LDR can be employed when observations are recorded with many correlated features to reduce the number of features upon which statistical inference may be necessary. Some of the benets of LDR are to increase the signal to noise ratio in noisy data, rotate features into orthogonal space to reduce feature correlation eects, reduce the number of parameters to estimate, and decrease computational and memory costs associated with model tting. In this manuscript, we will discuss applications of LDR to poorly-posed classication, ill-posed classication, and statistical process monitoring.
AbstractList Linear Dimension Reduction (LDR) has many uses in engineering, business, medicine, economics, data science and others. LDR can be employed when observations are recorded with many correlated features to reduce the number of features upon which statistical inference may be necessary. Some of the benets of LDR are to increase the signal to noise ratio in noisy data, rotate features into orthogonal space to reduce feature correlation eects, reduce the number of parameters to estimate, and decrease computational and memory costs associated with model tting. In this manuscript, we will discuss applications of LDR to poorly-posed classication, ill-posed classication, and statistical process monitoring.
Author Odom, Gabriel J
Author_xml – sequence: 1
  givenname: Gabriel
  surname: Odom
  middlename: J
  fullname: Odom, Gabriel J
BookMark eNrjYmDJy89LZWbgtTS3MDA2NTU1NwIyOBh4i4szkwwMDCyNjQ1MjDgZDEIyilJTFRwLCnIykxNLMvPzihXy0xR8MvNSE4sUXDJzU_OKgYIKQakppckgaR4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcyMDA0NLUwNjQyJk4VAEkhNbw
ContentType Dissertation
Copyright Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Copyright_xml – notice: Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
DBID 053
0BH
0EU
CBPLH
EU9
G20
M8-
PQEST
PQQKQ
PQUKI
DatabaseName Dissertations & Theses Europe Full Text: Science & Technology
ProQuest Dissertations and Theses Professional
Dissertations & Theses @ Baylor University Library
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations & Theses A&I
ProQuest Dissertations & Theses Global
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle Dissertations & Theses Europe Full Text: Science & Technology
Dissertations & Theses @ Baylor University Library
ProQuest One Academic UKI Edition
ProQuest One Academic Eastern Edition
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations and Theses Professional
ProQuest One Academic
ProQuest Dissertations & Theses A&I
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest Dissertations & Theses Global
DatabaseTitleList Dissertations & Theses Europe Full Text: Science & Technology
Database_xml – sequence: 1
  dbid: G20
  name: ProQuest Dissertations & Theses Global
  url: https://www.proquest.com/pqdtglobal1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
ExternalDocumentID 4325227913
Genre Dissertation/Thesis
GroupedDBID 053
0BH
0EU
8R4
8R5
CBPLH
EU9
G20
M8-
PQEST
PQQKQ
PQUKI
Q2X
ID FETCH-proquest_journals_20011583123
IEDL.DBID G20
ISBN 9780355572780
0355572788
IngestDate Thu Oct 10 20:39:59 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20011583123
PQID 2001158312
PQPubID 18750
ParticipantIDs proquest_journals_2001158312
PublicationCentury 2000
PublicationDate 20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 20170101
  day: 01
PublicationDecade 2010
PublicationYear 2017
Publisher ProQuest Dissertations & Theses
Publisher_xml – name: ProQuest Dissertations & Theses
SSID ssib000933042
Score 3.5881927
Snippet Linear Dimension Reduction (LDR) has many uses in engineering, business, medicine, economics, data science and others. LDR can be employed when observations...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Statistics
Title Three Applications of Linear Dimension Reduction
URI https://www.proquest.com/docview/2001158312
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQATYBUoyTzJN0zZOSTXRNUo3SdC0TDYCEkaWFmWVakrEJ-K5Dj2BzvwgLF1fQMTl2sL0woGWVsDIRXFCn5CeDxsj1jcCNFwtjQyP7gkJd0K1RoNlV6BUazAysoIPOwFc3IDd_EL11YLVqCqyqLSygh-7A-AYYZTC4YnEToNRJggw8Lkgz6kIMTKl5wgxcoCYk5ARmEQaDEGB0pSo4Is1UK-SnKQA7ocBEruACOt0fNGKmEAQ6xBUkLcqg7OYa4uyhC3NOPDTBFccj3GIsxsCSl5-XKsGgAOwsJCUapaSYJ6eYg7aOW1okmZiZJZukmVgapKZapkoyyOAzSQq_tDQDlxGojgOPR8gwsJQUlabKMjAXp5TKgaMBACtwlI4
link.rule.ids 312,782,786,787,11657,11697,34256,34258,44058,74582,79430
linkProvider ProQuest
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQATYBUoyTzJN0zZOSTXRNUo3SdC0TDYCEkaWFmWVakrEJ-K5Dj2BzvwgLF1fQMTl2sL0woGWVsDIRXFCn5CeDxsj1jcCNFwtjQyP7gkJd0K1RoNlV6BUazAysJsCWB2hJlzty8wfRWwdWq6bAqtrCAnroDoxvgFEGgysWNwFKnSTIwOOCNKMuxMCUmifMwAVqQkJOYBZhMAgBRleqgiPSTLVCfpoCsBMKTOQKLqDT_UEjZgpBoENcQdKiDMpuriHOHrow58RDE1xxPMItxmIMLHn5eakSDArAzkJSolFKinlyijlo67ilRZKJmVmySZqJpUFqqmWqJIMMPpOk8EvLM3B6hPj6xPt4-nlLM3AZgeo78NiEDANLSVFpqiwDc3FKqRw4SgBChpd2
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5sBSk9-MZq1YBeQ9ds3CQnEbdLfVBEe_C2NJvkuFut_f9m4i5dEHryEgiBMGHCvOcbgGtvAphYC02FLjjlljmq5pFfmJKJcjrmYdbh5F1MP2Q6Rpicp6YXBssqG5kYBLWpCoyRj1gwXmR8w0auLot4TbO7xSfFCVKYaa3HaXRgW2AyCBt_26bQ2nP3KvbWq20pawCeZh_9kcdByWS7_0neHvTTVqZ9H7ZseQA9NC1_kZkPIZp5Nlpy38pgk8oR75z6z09SRP3HSBp5Q3BXPD6Cq2w8e5jQhrS8_ojLfE1XfAzdsirtCRDvROg5M0YURmBLuZKaJ0nBHVeRtcoOYLjpptPNx5ew45-evzxOn8-gx1ANhpDFELrfXyt7Dp2lWV0E7vwARYOgOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=Three+Applications+of+Linear+Dimension+Reduction&rft.DBID=053%3B0BH%3B0EU%3BCBPLH%3BEU9%3BG20%3BM8-%3BPQEST%3BPQQKQ%3BPQUKI&rft.PQPubID=18750&rft.au=Odom%2C+Gabriel+J&rft.date=2017-01-01&rft.pub=ProQuest+Dissertations+%26+Theses&rft.isbn=9780355572780&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4325227913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780355572780/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780355572780/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780355572780/sc.gif&client=summon&freeimage=true