Investigation of Molecular and Cellular Mechanism of Myelin – Induced Axonal Degeneration

Axon degeneration is a selective elimination of axons, which plays a crucial role during development, injury, and maintenance of neuronal connections. The p75 neurotrophin receptor (NTR) is responsible for maintaining the specificity of neuronal connectivity in parts of the adult brain by inducing t...

Full description

Saved in:
Bibliographic Details
Main Author: Dedeagac, Asli
Format: Dissertation
Language:English
Published: ProQuest Dissertations & Theses 01-01-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Axon degeneration is a selective elimination of axons, which plays a crucial role during development, injury, and maintenance of neuronal connections. The p75 neurotrophin receptor (NTR) is responsible for maintaining the specificity of neuronal connectivity in parts of the adult brain by inducing the degeneration of aberrantly growing axons into myelinated tracts. The objective of this study is to identify and characterize the signaling pathways used by p75NTR to mediate axon degeneration on myelin. Since p75NTR signals via JNK/Bax/caspase pathway to cause apoptosis, I asked whether this pathway might also be involved in axon degeneration. I observed that inhibition of JNK or Bax significantly decreased myelin-induced axonal degeneration, while depolarization of axons with potassium chloride prevented axonal degeneration on myelin. Together, these results suggest that p75NTR-dependent, myelin-mediated axon degeneration occurs via JNK/BAX signaling, and that neural activity is important for the prevention of myelin-induced axonal degeneration.
ISBN:1321398565
9781321398564