PPAR[gamma] contributes to PKM2 and HK2 expression in fatty liver

Rapidly proliferating cells promote glycolysis in aerobic conditions, to increase growth rate. Expression of specific glycolytic enzymes, namely pyruvate kinase M2 and hexokinase 2, concurs to this metabolic adaptation, as their kinetics and intracellular localization favour biosynthetic processes r...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 3; p. 672
Main Authors: Panasyuk, Ganna, Espeillac, Catherine, Chauvin, Céline, Pradelli, Ludivine A, Horie, Yasuo, Suzuki, Akira, Annicotte, Jean-sebastien, Fajas, Lluis, etz, Marc, Verdeguer, Francisco, Pontoglio, Marco, Ferré, Pascal, Scoazec, Jean-yves, Birnbaum, Morris J, Ricci, Jean-ehrland, Pende, Mario
Format: Journal Article
Language:English
Published: London Nature Publishing Group 01-02-2012
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rapidly proliferating cells promote glycolysis in aerobic conditions, to increase growth rate. Expression of specific glycolytic enzymes, namely pyruvate kinase M2 and hexokinase 2, concurs to this metabolic adaptation, as their kinetics and intracellular localization favour biosynthetic processes required for cell proliferation. Intracellular factors regulating their selective expression remain largely unknown. Here we show that the peroxisome proliferator-activated receptor gamma transcription factor and nuclear hormone receptor contributes to selective pyruvate kinase M2 and hexokinase 2 gene expression in PTEN-null fatty liver. Peroxisome proliferator-activated receptor gamma expression, liver steatosis, shift to aerobic glycolysis and tumorigenesis are under the control of the Akt2 kinase in PTEN-null mouse livers. Peroxisome proliferator-activated receptor gamma binds to hexokinase 2 and pyruvate kinase M promoters to activate transcription. In vivo rescue of peroxisome proliferator-activated receptor gamma activity causes liver steatosis, hypertrophy and hyperplasia. Our data suggest that therapies with the insulin-sensitizing agents and peroxisome proliferator-activated receptor gamma agonists, thiazolidinediones, may have opposite outcomes depending on the nutritional or genetic origins of liver steatosis.
ISSN:2041-1723
DOI:10.1038/ncomms1667