Thermal and electrochemical behavior of Cu{sub 4−x}Li{sub x}S{sub 2} (x=1, 2, 3) phases

Several compositions of the Cu{sub 4−x}Li{sub x}S{sub 2} (x=1, 2, 3) series were synthesized via solid-state reaction of the elements. The structural stability at various temperatures and the effect of Li:Cu ratio on the thermal conductivity and the electrochemical performance of Cu{sub 4−x}Li{sub x...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state chemistry Vol. 232
Main Authors: Chen, Erica M., Poudeu, Pierre F.P.
Format: Journal Article
Language:English
Published: United States 15-12-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several compositions of the Cu{sub 4−x}Li{sub x}S{sub 2} (x=1, 2, 3) series were synthesized via solid-state reaction of the elements. The structural stability at various temperatures and the effect of Li:Cu ratio on the thermal conductivity and the electrochemical performance of Cu{sub 4−x}Li{sub x}S{sub 2}/Li half-cells during charge–discharge process were investigated. Differential scanning calorimetry (DSC) measurements showed a sharp endothermic peak at 140 °C for Cu{sub 4−x}Li{sub x}S{sub 2} samples with x=1 and 2, which is ascribed to a structural phase transition. X-ray diffraction (XRD) measurements on various Cu{sub 4−x}Li{sub x}S{sub 2} samples at temperatures below and above 140 °C indicated a structural phase transition from the room temperature low-symmetry structure to the high temperature cubic structure of Cu{sub 2}S. The thermal conductivity of Cu{sub 4−x}Li{sub x}S{sub 2} samples decreases with decreasing Cu:Li ratio and with increasing temperature. The thermal conductivity of Cu{sub 4−x}Li{sub x}S{sub 2} samples at room temperature decreases from 1.2 W/m K for Cu:Li=3:1 to 0.7 W/m K for Cu:Li=1:3. Cyclic voltammetry of Cu{sub 4−x}Li{sub x}S{sub 2}/Li half-cells showed that high discharge capacity (165 mA h g{sup −1}) and stable reversible charge–discharge process is observed for Cu:Li=2:2, whereas other Cu:Li ratios lead to low discharge capacity and poor reversibility. The electrochemical behavior of Cu{sub 4−x}Li{sub x}S{sub 2}/Li half-cells is rationalized by taking into account the competing reactions of Li{sup +} ions with CuS and Cu{sub 2}S during discharge. - Graphical abstract: Tuning Li content in Cu{sub 4−x}Li{sub x}S{sub 2}/Li half-cells to maintain a Cu/Li ratio equal to unity affords maximum capacity and high stability of the charge–discharge process. - Highlights: • Cu:Li ratio strongly influenced crystal structure and properties of Cu{sub 4-x}Li{sub x}S{sub 2}. • Compositions with x = 1 and 2 undergo structural transformation at above 140 °C. • Thermal conductivity of Cu{sub 4-x}Li{sub x}S{sub 2} phases increases with decreasing Cu:Li ratio. • Stability of Cu{sub 4-x}Li{sub x}S{sub 2}/Li half-cells decreases with Cu:Li ratio. • Initial charge capacity of Cu{sub 4-x}Li{sub x}S{sub 2}/Li half-cells increases with Cu:Li ratio.
ISSN:0022-4596
1095-726X
DOI:10.1016/J.JSSC.2015.08.045