Silanol-assisted carbinolamine formation in an amine-functionalized mesoporous silica surface: Theoretical investigation by fragmentation methods

The aldol reaction catalyzed by an amine-substituted mesoporous silica nanoparticle (amine-MSN) surface was investigated using a large molecular cluster model (Si392O958C6NH361) combined with the surface integrated molecular orbital/molecular mechanics (SIMOMM) and fragment molecular orbital (FMO) m...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B
Main Authors: de Lima Batista, Ana P., Zahariev, Federico, Slowing, Igor I., Braga, Ataualpa A. C., Ornellas, Fernando R., Gordon, Mark S.
Format: Journal Article
Language:English
Published: United States American Chemical Society 15-12-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aldol reaction catalyzed by an amine-substituted mesoporous silica nanoparticle (amine-MSN) surface was investigated using a large molecular cluster model (Si392O958C6NH361) combined with the surface integrated molecular orbital/molecular mechanics (SIMOMM) and fragment molecular orbital (FMO) methods. Three distinct pathways for the carbinolamine formation, the first step of the amine-catalyzed aldol reaction, are proposed and investigated in order to elucidate the role of the silanol environment on the catalytic capability of the amine-MSN material. Here the computational study reveals that the most likely mechanism involves the silanol groups actively participating in the reaction, forming and breaking covalent bonds in the carbinolamine step. Furthermore, the active participation of MSN silanol groups in the reaction mechanism leads to a significant reduction in the overall energy barrier for the carbinolamine formation. In addition, a comparison between the findings using a minimal cluster model and the Si392O958C6NH361 cluster suggests that the use of larger models is important when heterogeneous catalysis problems are the target.
Bibliography:IS-J-8869
USDOE Office of Science (SC), Basic Energy Sciences (BES)
236761/2012-9; 2013/22235-0; AC02-07CH11358
ISSN:1520-6106
1520-5207