Structures of potent anticancer compounds bound to tubulin
Abstract Small molecules that bind to tubulin exert powerful effects on cell division and apoptosis (programmed cell death). Cell‐based high‐throughput screening combined with chemo/bioinformatic and biochemical analyses recently revealed a novel compound MI‐181 as a potent mitotic inhibitor with he...
Saved in:
Published in: | Protein science Vol. 24; no. 7 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United Kingdom
Wiley Blackwell (John Wiley & Sons)
27-05-2015
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Small molecules that bind to tubulin exert powerful effects on cell division and apoptosis (programmed cell death). Cell‐based high‐throughput screening combined with chemo/bioinformatic and biochemical analyses recently revealed a novel compound MI‐181 as a potent mitotic inhibitor with heightened activity towards melanomas. MI‐181 causes tubulin depolymerization, activates the spindle assembly checkpoint arresting cells in mitosis, and induces apoptotic cell death. C2 is an unrelated compound previously shown to have lethal effects on microtubules in tumorigenic cell lines. We report 2.60 Å and 3.75 Å resolution structures of MI‐181 and C2, respectively, bound to a ternary complex of αβ‐tubulin, the tubulin‐binding protein stathmin, and tubulin tyrosine ligase. In the first of these structures, our crystallographic results reveal a unique binding mode for MI‐181 extending unusually deep into the well‐studied colchicine‐binding site on β‐tubulin. In the second structure the C2 compound occupies the colchicine‐binding site on β‐tubulin with two chemical moieties recapitulating contacts made by colchicine, in combination with another system of atomic contacts. These insights reveal the source of the observed effects of MI‐181 and C2 on microtubules, mitosis, and cultured cancer cell lines. The structural details of the interaction between tubulin and the described compounds may guide the development of improved derivative compounds as therapeutic candidates or molecular probes to study cancer cell division. |
---|---|
Bibliography: | USDOE DE‐AC02–06CH11357 |
ISSN: | 0961-8368 1469-896X |