Experimental verification and improvement of heat transfer tube local wall temperature measurement method
To ensure the measuring accuracy of the wall temperature, the outer wall temperature measurement values by using three kinds of thermocouple welding methods were analyzed and evaluated in the paper, including single-point flush-mounted in the wall groove method, single-point insert-mounted in the wa...
Saved in:
Published in: | Nuclear engineering and technology Vol. 55; no. 12; pp. 4317 - 4328 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | Korean |
Published: |
2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To ensure the measuring accuracy of the wall temperature, the outer wall temperature measurement values by using three kinds of thermocouple welding methods were analyzed and evaluated in the paper, including single-point flush-mounted in the wall groove method, single-point insert-mounted in the wall groove, and outer surface direct welding method, based on the application of a tube-in-tube condensing heat exchanger. And the impacts of silver, tin, and thermal resistance adhesive as filling materials on wall temperature measurement were also investigated, and the results were compared to that obtained without filling materials. The results showed that the wall temperatures measured by the three welding methods were lower than the theoretically calculated value. And the wall temperature measured by the outer surface direct welding method was lowest under the same experimental conditions. The wall temperatures measured by single-point flush-mounted and insert-mounted in the wall groove methods were also affected by different welding filling materials. It was found that the greater the thermal resistance of filling materials, the smaller the heat loss. By analyzing the reasons for the low measured value of wall temperature, a new wall temperature measurement method was developed to improve the accuracy of the current measurement method. Meanwhile, the outer wall temperature measurement experiments of vertical and horizontal heat transfer tubes were carried out to validate and calibrate the improved outer wall temperature measurement method. The results showed that the average outer wall temperature deviation measured by the improved wall temperature measurement method ranged from - 0.82% to +2.29% for vertical tubes and - 4.75% to - 1.44% for horizontal tubes, and the improved measurement method had good measurement accuracy. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202311455899616 |
ISSN: | 1738-5733 2234-358X |