Evaluation of shrimp protein hydrolysate and krill meal supplementation in low fish meal diet for red seabream (Pagrus major)
Protein hydrolysates and krill meal (KM) are used as protein sources in aquafeeds. The study was conducted to examine the supplemental effects of shrimp protein hydrolysates (SH) or KM in a high-plant-protein diet for red seabream (Pagrus major). A fish meal (FM)-based diet (40%) was considered as t...
Saved in:
Published in: | Fisheries and aquatic sciences Vol. 24; no. 3; pp. 109 - 120 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | Korean |
Published: |
2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein hydrolysates and krill meal (KM) are used as protein sources in aquafeeds. The study was conducted to examine the supplemental effects of shrimp protein hydrolysates (SH) or KM in a high-plant-protein diet for red seabream (Pagrus major). A fish meal (FM)-based diet (40%) was considered as the high-FM diet (HFM) and a diet containing 25% FM and soy protein concentrate, in the expense of FM protein from HFM diet, was considered as the low fish meal (LFM) diet. Two other experimental diets (SH and KM) were prepared by including SH and KM into LFM diet at 5% inclusion levels in exchange of 5% FM from the LFM diet. A feeding trial was conducted for fifteen weeks using triplicate group of fish (Initial mean body weight, 8.47 ± 0.05 g) for a diet. Growth performance and feed efficiency of fish were significantly enhanced by HFM, KM and SH supplemented diets over those of fish fed LFM diet. Interestingly, these parameters of fish fed SH diet showed better performance than KM and HFM groups. Liver IGF-I expression of fish fed SH diet was comparable to HFM group and higher than KM and LFM diets. Protein digestibility of SH diet was significantly higher than KM, HFM, and LFM diets. Dry matter digestibility of SH diet was comparable to HFM diet and significantly higher than KM and LFM diets. Nitro blue tetrazolium and superoxide dismutase activities of HFM, SH and KM groups were significantly elevated than the LFM group and SH diet increased catalase and glutathione peroxidase activities of fish compared to KM and LFM groups. Hemoglobin level and hematocrit of fish fed SH and KM diets were significantly higher than LFM group. A diet containing 20% FM with KM is comparable to a HFM diet which contains 40% FM for red seabream. SH can be used to replace FM from red seabream diet down to 20% and fish performance can be improved better than a diet containing 40% FM. Overall, it seems that SH is more effective ingredient in red seabream diet compared to KM. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202121765247580 |
ISSN: | 2234-1749 2234-1757 |