COMMUTATORS OF SINGULAR INTEGRAL OPERATOR ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT
Let ${\Omega}{\in}L^s(S^{n-1})$ for s > 1 be a homogeneous function of degree zero and b be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the $Calder{\acute{o}}n$-Zygmund singular integral operator $T_{\Omega}$ and its commutator [b, $T_{\Omega}$] on Herz-type...
Saved in:
Published in: | Journal of the Korean Mathematical Society Vol. 54; no. 3; pp. 713 - 732 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | Korean |
Published: |
2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let ${\Omega}{\in}L^s(S^{n-1})$ for s > 1 be a homogeneous function of degree zero and b be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the $Calder{\acute{o}}n$-Zygmund singular integral operator $T_{\Omega}$ and its commutator [b, $T_{\Omega}$] on Herz-type Hardy spaces with variable exponent. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201717234702995 |
ISSN: | 0304-9914 |