COMMUTATORS OF SINGULAR INTEGRAL OPERATOR ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

Let ${\Omega}{\in}L^s(S^{n-1})$ for s > 1 be a homogeneous function of degree zero and b be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the $Calder{\acute{o}}n$-Zygmund singular integral operator $T_{\Omega}$ and its commutator [b, $T_{\Omega}$] on Herz-type...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Korean Mathematical Society Vol. 54; no. 3; pp. 713 - 732
Main Author: Wang, Hongbin
Format: Journal Article
Language:Korean
Published: 2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let ${\Omega}{\in}L^s(S^{n-1})$ for s > 1 be a homogeneous function of degree zero and b be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the $Calder{\acute{o}}n$-Zygmund singular integral operator $T_{\Omega}$ and its commutator [b, $T_{\Omega}$] on Herz-type Hardy spaces with variable exponent.
Bibliography:KISTI1.1003/JNL.JAKO201717234702995
ISSN:0304-9914