WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS A n OPERATO
An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's th...
Saved in:
Published in: | Journal of the Korean Mathematical Society Vol. 51; no. 5; pp. 1089 - 1104 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | Korean |
Published: |
2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators. |
---|---|
AbstractList | An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators. |
Author | Braha, Naim Latif Hoxha, Ilmi |
Author_xml | – sequence: 1 fullname: Hoxha, Ilmi – sequence: 2 fullname: Braha, Naim Latif |
BookMark | eNqNy7FuwjAUQFEPVCpt8w9vqboQKXGMS0bLeYG0iR3sZ1VMqAgqRUTpYP5fMLQ7013OfWKz6Xc6zdg8KzKRlmUuHlkS43DIcr7iQizlnI1fuGvfPNAGrcNuAYTGWwe9s1XQtIA6rFusMO0DGdX9O1CmAm0NNSY0tAPfoyYXOqhv7zndBuUb0K3yHhRMYHt0iuwLe_j5HuMp-esze62R9CY9D_Ey7KdjHPcf6tPyLBdcykLyd1nyVXGvuwLyeT7x |
ContentType | Journal Article |
DBID | JDI |
DEWEY | 510 |
DatabaseName | KoreaScience |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS A n OPERATO |
EndPage | 1104 |
ExternalDocumentID | JAKO201426636276928 |
GroupedDBID | 2WC 5GY 9ZL ACIPV ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL DIK FRP JDI KHM KVFHK OK1 TR2 YYP |
ID | FETCH-kisti_ndsl_JAKO2014266362769283 |
ISSN | 0304-9914 |
IngestDate | Fri Dec 22 12:03:21 EST 2023 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | k-quasi class $A_n^$ operators tensor products a-Weyl's theorem hyperinvariant Weyl's theorem Fuglede-Putnam theorem polaroid operators continuity spectrum |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-kisti_ndsl_JAKO2014266362769283 |
Notes | KISTI1.1003/JNL.JAKO201426636276928 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201426636276928&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
ParticipantIDs | kisti_ndsl_JAKO201426636276928 |
PublicationCentury | 2000 |
PublicationDate | 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 2014 |
PublicationDecade | 2010 |
PublicationTitle | Journal of the Korean Mathematical Society |
PublicationTitleAlternate | 대한수학회지 |
PublicationYear | 2014 |
SSID | ssib012824456 ssib004262734 ssib004298618 ssj0045299 ssib002374240 |
Score | 3.8859985 |
Snippet | An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$... |
SourceID | kisti |
SourceType | Open Access Repository |
StartPage | 1089 |
Title | WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS A n OPERATO |
URI | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201426636276928&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb4JAEN60ntpD02f6NHuo6QFJUAnIkcC2UhWMQFpPBmFNjIqN1qQ_v7MsCDZ9HnohZLIsMPNl5tud3VmEboECN-UAvB-FwYAIoFDEUaBJYhCFI20MMYEmxwG1XNV-bppEJnlBhVz2r5YGGdia7Zz9g7U3nYIA7sHmcAWrw_VXdn8ig06lrrpsLY_TJ93EIMR2nT5o2zF9w0v4qv_QISYRe75n692sbVJrynBsz7J9yxsIbo8YXt_vCjBUFKYisF_XEoyO7rrgT2LB6ZG-7jlf8FvGaNuLJZvp725qw7LaI4tN8RG-bveN55ys2XxSyPBzoR1M5kIHnhwXpyf4htBsQ5Yki0A_5aKzTavLTorp7Bd--C0_SiiNwrX0VOLtCtkfItdmPeGj3nbYy4FtQEBWFa3Otn_D0Jj5OdNqFwiKKtflosdSWH2fYnRuKnm0huAN9IdVG-KxnWWpNZ6X4r8GQxrG8ycFTuIdooNU2VjnKDhCO9PFMdrPtb06QTOGhzsXpxauYo4FnGKhireRkLXDgAScIwFnSMCABJwiASdIwDqOcYqEU1S5J57REpOvHcbRajb8RGmNM1SKFzE9R1ilNaVOG2oo1SgoMgwkhYZqQEMqRaOaEl6g8vd9Xf7U4ArtMQmfz7pGpdflmt6g3VW0LidGewfTPT38 |
link.rule.ids | 230,315,782,786,887,4029 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WEYL%27S+THEOREM%2C+TENSOR+PRODUCT%2C+FUGLEDE-PUTNAM+THEOREM+AND+CONTINUITY+SPECTRUM+FOR+k-QUASI+CLASS+A+n+OPERATO&rft.jtitle=Journal+of+the+Korean+Mathematical+Society&rft.au=Hoxha%2C+Ilmi&rft.au=Braha%2C+Naim+Latif&rft.date=2014&rft.issn=0304-9914&rft.volume=51&rft.issue=5&rft.spage=1089&rft.epage=1104&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO201426636276928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-9914&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-9914&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-9914&client=summon |