WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS A n OPERATO

An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Korean Mathematical Society Vol. 51; no. 5; pp. 1089 - 1104
Main Authors: Hoxha, Ilmi, Braha, Naim Latif
Format: Journal Article
Language:Korean
Published: 2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators.
AbstractList An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators.
Author Braha, Naim Latif
Hoxha, Ilmi
Author_xml – sequence: 1
  fullname: Hoxha, Ilmi
– sequence: 2
  fullname: Braha, Naim Latif
BookMark eNqNy7FuwjAUQFEPVCpt8w9vqboQKXGMS0bLeYG0iR3sZ1VMqAgqRUTpYP5fMLQ7013OfWKz6Xc6zdg8KzKRlmUuHlkS43DIcr7iQizlnI1fuGvfPNAGrcNuAYTGWwe9s1XQtIA6rFusMO0DGdX9O1CmAm0NNSY0tAPfoyYXOqhv7zndBuUb0K3yHhRMYHt0iuwLe_j5HuMp-esze62R9CY9D_Ey7KdjHPcf6tPyLBdcykLyd1nyVXGvuwLyeT7x
ContentType Journal Article
DBID JDI
DEWEY 510
DatabaseName KoreaScience
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS A n OPERATO
EndPage 1104
ExternalDocumentID JAKO201426636276928
GroupedDBID 2WC
5GY
9ZL
ACIPV
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
FRP
JDI
KHM
KVFHK
OK1
TR2
YYP
ID FETCH-kisti_ndsl_JAKO2014266362769283
ISSN 0304-9914
IngestDate Fri Dec 22 12:03:21 EST 2023
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords k-quasi class $A_n^$ operators
tensor products
a-Weyl's theorem
hyperinvariant
Weyl's theorem
Fuglede-Putnam theorem
polaroid operators
continuity spectrum
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-kisti_ndsl_JAKO2014266362769283
Notes KISTI1.1003/JNL.JAKO201426636276928
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201426636276928&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
ParticipantIDs kisti_ndsl_JAKO201426636276928
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle Journal of the Korean Mathematical Society
PublicationTitleAlternate 대한수학회지
PublicationYear 2014
SSID ssib012824456
ssib004262734
ssib004298618
ssj0045299
ssib002374240
Score 3.8859985
Snippet An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$...
SourceID kisti
SourceType Open Access Repository
StartPage 1089
Title WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS A n OPERATO
URI http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201426636276928&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb4JAEN60ntpD02f6NHuo6QFJUAnIkcC2UhWMQFpPBmFNjIqN1qQ_v7MsCDZ9HnohZLIsMPNl5tud3VmEboECN-UAvB-FwYAIoFDEUaBJYhCFI20MMYEmxwG1XNV-bppEJnlBhVz2r5YGGdia7Zz9g7U3nYIA7sHmcAWrw_VXdn8ig06lrrpsLY_TJ93EIMR2nT5o2zF9w0v4qv_QISYRe75n692sbVJrynBsz7J9yxsIbo8YXt_vCjBUFKYisF_XEoyO7rrgT2LB6ZG-7jlf8FvGaNuLJZvp725qw7LaI4tN8RG-bveN55ys2XxSyPBzoR1M5kIHnhwXpyf4htBsQ5Yki0A_5aKzTavLTorp7Bd--C0_SiiNwrX0VOLtCtkfItdmPeGj3nbYy4FtQEBWFa3Otn_D0Jj5OdNqFwiKKtflosdSWH2fYnRuKnm0huAN9IdVG-KxnWWpNZ6X4r8GQxrG8ycFTuIdooNU2VjnKDhCO9PFMdrPtb06QTOGhzsXpxauYo4FnGKhireRkLXDgAScIwFnSMCABJwiASdIwDqOcYqEU1S5J57REpOvHcbRajb8RGmNM1SKFzE9R1ilNaVOG2oo1SgoMgwkhYZqQEMqRaOaEl6g8vd9Xf7U4ArtMQmfz7pGpdflmt6g3VW0LidGewfTPT38
link.rule.ids 230,315,782,786,887,4029
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WEYL%27S+THEOREM%2C+TENSOR+PRODUCT%2C+FUGLEDE-PUTNAM+THEOREM+AND+CONTINUITY+SPECTRUM+FOR+k-QUASI+CLASS+A+n+OPERATO&rft.jtitle=Journal+of+the+Korean+Mathematical+Society&rft.au=Hoxha%2C+Ilmi&rft.au=Braha%2C+Naim+Latif&rft.date=2014&rft.issn=0304-9914&rft.volume=51&rft.issue=5&rft.spage=1089&rft.epage=1104&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO201426636276928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-9914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-9914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-9914&client=summon