A Low Complexity Solution for Resource Allocation and SDMA Grouping in Massive MIMO Systems

This work investigates the space-division multiple access grouping problem in multiuser massive multiple input multiple output (MIMO). The adopted approach consists in performing firstly the K-means algorithm, that is a classification algorithm well known in machine learning field, to split mobile s...

Full description

Saved in:
Bibliographic Details
Published in:2018 15th International Symposium on Wireless Communication Systems (ISWCS) pp. 1 - 6
Main Authors: Mauricio, Weskley V. F., Araujo, Daniel C., Hugo Neto, F.C., Rafael Lima, F.M., Maciel, Tarcisio F.
Format: Conference Proceeding
Language:English
Published: IEEE 01-08-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work investigates the space-division multiple access grouping problem in multiuser massive multiple input multiple output (MIMO). The adopted approach consists in performing firstly the K-means algorithm, that is a classification algorithm well known in machine learning field, to split mobile stations (MSs) into spatially compatible clusters based on the knowledge of the users' spatial covariance matrices. Secondly, it schedules a sub-set of MSs from each cluster thus supporting multiple spatial streams per cluster. Furthermore, the MSs are selected based on a metric that accounts for the trade-off between their spatial channel correlation and channel gain. The corresponding scheduling is optimally solved by using branch and bound (BB) and best fit (BF) algorithms. Moreover, we compare the proposed solutions with the random scheduler that performs clustering and chooses the MSs to compose the groups at random. The simulation results show that the two proposed solutions, BB and BF outperform, the random scheduler. The BB and BF solutions achieve similar capacity performance, but the first has polynomial-time computational complexity while the second a exponential computational complexity.
AbstractList This work investigates the space-division multiple access grouping problem in multiuser massive multiple input multiple output (MIMO). The adopted approach consists in performing firstly the K-means algorithm, that is a classification algorithm well known in machine learning field, to split mobile stations (MSs) into spatially compatible clusters based on the knowledge of the users' spatial covariance matrices. Secondly, it schedules a sub-set of MSs from each cluster thus supporting multiple spatial streams per cluster. Furthermore, the MSs are selected based on a metric that accounts for the trade-off between their spatial channel correlation and channel gain. The corresponding scheduling is optimally solved by using branch and bound (BB) and best fit (BF) algorithms. Moreover, we compare the proposed solutions with the random scheduler that performs clustering and chooses the MSs to compose the groups at random. The simulation results show that the two proposed solutions, BB and BF outperform, the random scheduler. The BB and BF solutions achieve similar capacity performance, but the first has polynomial-time computational complexity while the second a exponential computational complexity.
Author Mauricio, Weskley V. F.
Hugo Neto, F.C.
Araujo, Daniel C.
Rafael Lima, F.M.
Maciel, Tarcisio F.
Author_xml – sequence: 1
  givenname: Weskley V. F.
  surname: Mauricio
  fullname: Mauricio, Weskley V. F.
  email: weskley@gtel.ufc.br
  organization: Wireless Telecomunnications Res. Group, Fed. Univ. of Ceara, Fortaleza, Brazil
– sequence: 2
  givenname: Daniel C.
  surname: Araujo
  fullname: Araujo, Daniel C.
  email: araujo@gtel.ufc.br
  organization: Wireless Telecomunnications Res. Group, Fed. Univ. of Ceara, Fortaleza, Brazil
– sequence: 3
  givenname: F.C.
  surname: Hugo Neto
  fullname: Hugo Neto, F.C.
  email: hugo@gtel.ufc.br
  organization: Wireless Telecomunnications Res. Group, Fed. Univ. of Ceara, Fortaleza, Brazil
– sequence: 4
  givenname: F.M.
  surname: Rafael Lima
  fullname: Rafael Lima, F.M.
  email: rafaelm@gtel.ufc.br
  organization: Wireless Telecomunnications Res. Group, Fed. Univ. of Ceara, Fortaleza, Brazil
– sequence: 5
  givenname: Tarcisio F.
  surname: Maciel
  fullname: Maciel, Tarcisio F.
  email: maciel@gtel.ufc.br
  organization: Wireless Telecomunnications Res. Group, Fed. Univ. of Ceara, Fortaleza, Brazil
BookMark eNp9jkFLwzAYQKMouGn_gF6-P7D6JWu69Fiq08GKYAQPHkaY3ySSJiVp1f57QXb29OC9y5uzMx88MXbNMeccq9uNfm10LpCrXBUVx1V5wrJqpbhcqlIiyuqUzQSXxQKFkBcsS-kTEUWpZFEWM_ZWwzZ8QxO63tGPHSbQwY2DDR4OIcIzpTDGPUHtXNibP2_8O-i7toaHGMbe-g-wHlqTkv0iaDftE-gpDdSlK3Z-MC5RduQlu1nfvzSPC0tEuz7azsRpd9xe_l9_AcBsRkA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISWCS.2018.8491076
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538650059
1538650053
EISSN 2154-0225
EndPage 6
ExternalDocumentID 8491076
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-ieee_primary_84910763
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:42 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_84910763
ParticipantIDs ieee_primary_8491076
PublicationCentury 2000
PublicationDate 2018-Aug.
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug.
PublicationDecade 2010
PublicationTitle 2018 15th International Symposium on Wireless Communication Systems (ISWCS)
PublicationTitleAbbrev ISWCS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002685464
ssj0001286286
Score 3.415091
Snippet This work investigates the space-division multiple access grouping problem in multiuser massive multiple input multiple output (MIMO). The adopted approach...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Antennas
Clustering algorithms
Interference
Massive MIMO
Measurement
MIMO communication
Multiaccess communication
Radio Resource Allocation
SDMA Grouping
Wireless communication
Title A Low Complexity Solution for Resource Allocation and SDMA Grouping in Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/8491076
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7cnvTioxW1KnPw6La1GzfZ49IHLbgqrKDgoexuUhAkW7SL-O_NZB9W6MVbksMwJGRm-DLfF4ArUxEMl34WuCwRzGWe8tw0Mxcv4_KGy8REREWY7izm9y9iPCGZnOuGC6OUss1nqkdD-5Yv86wgqKwvmElu3HfA4YEouVobeIoglmUzH_rilvms5skMgv48fh7F1MwlepWhPz-q2IQy3f-fKwfQ-WXm4WOTcw5hR-kj2NsQFWzDa4h3-RfSRSexy_U31tAXmgIVa7wew3fKY3Y90RLjcRSiRaKMFXzTGJmy2oRCjObRA1bC5h3oTidPo5lLri5WpVLFovLSO4aWzrU6ARykPJGmRBP05OkpIUx840tzjCxJU5F5p9DeZuFs-3IXdmk_y4a4c2itPwp1Ac6nLC7t6fwA486TPg
link.rule.ids 310,311,782,786,791,792,798,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4eVAvfmyizo938Gi3umZNdiz7oMV2Ch0oeChtk8FAWtEV8b83Sds5YRdvSQ6PR0Lee_zyfr8A3MqKoL-w06FBYkYMYgnLSFJ58VLK7ymPZUQUCtN1Qzp7YeOJksm5W3NhhBC6-Ux01VC_5fM8LRRU1mNEJjdqN2B3QCg1S7bWBqLCFM9yPe_bbEBsUjNlzGHPC59HoWrnYt3K1J8_VXRKmR7-z5kjaP9y8_BpnXWOYUdkJ3CwISvYglcH_fwL1VVXcperb6zBL5QlKtaIPTpvKpPp9TjjGI4DBzUWJa3gMsNAFtYyGGLgBY9YSZu3oTOdzEeuoVyN3kutiqjy0jqFZpZn4gzQTGjMZZHG1KOnJRiTEY4u5EGSOElYap1Da5uFi-3LN7DnzgM_8r3ZQwf21d6W7XGX0Fx9FOIKGp-8uNYn9QPIo5aJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+15th+International+Symposium+on+Wireless+Communication+Systems+%28ISWCS%29&rft.atitle=A+Low+Complexity+Solution+for+Resource+Allocation+and+SDMA+Grouping+in+Massive+MIMO+Systems&rft.au=Mauricio%2C+Weskley+V.+F.&rft.au=Araujo%2C+Daniel+C.&rft.au=Hugo+Neto%2C+F.C.&rft.au=Rafael+Lima%2C+F.M.&rft.date=2018-08-01&rft.pub=IEEE&rft.eissn=2154-0225&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISWCS.2018.8491076&rft.externalDocID=8491076