Sleep apnea detection for prephase diagnosis using third level holter recording device

Sleep Apnea Syndrome (SAS) is generally analysed by an expensive medical routine including polysomnographic overnight recordings. Relatively low cost Holter device has been designed to record some significant physiological signals for sleep apnea at home. The device is capable of recording ECG, resp...

Full description

Saved in:
Bibliographic Details
Published in:2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU) pp. 865 - 868
Main Authors: Dundar, T., Yilmaz, A., Caglar, O.
Format: Conference Proceeding
Language:English
Published: IEEE 01-04-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sleep Apnea Syndrome (SAS) is generally analysed by an expensive medical routine including polysomnographic overnight recordings. Relatively low cost Holter device has been designed to record some significant physiological signals for sleep apnea at home. The device is capable of recording ECG, respiratory effort, oronasal airflow and oxygen saturation data on a high capacity memory card over a long period of time simultaneously for prephase sleep apnea monitoring. Under the scope of this study, algorithms based on processing solely ECG signal and based on artificial neural network using signals from three channels have been developed for prephase sleep apnea diagnosis. The ECG based detection algorithm uses the variation on Power Spectral Densities (PSDs) of Heart Rate Variability (HRV) and RR interval (RRI) signals obtained from ECGs. In neural network approach, oxygen desaturation, oronasal signal parameters along with heart rate variation are processed as inputs to distributed Time Delayed Neural Network (TDNN).
AbstractList Sleep Apnea Syndrome (SAS) is generally analysed by an expensive medical routine including polysomnographic overnight recordings. Relatively low cost Holter device has been designed to record some significant physiological signals for sleep apnea at home. The device is capable of recording ECG, respiratory effort, oronasal airflow and oxygen saturation data on a high capacity memory card over a long period of time simultaneously for prephase sleep apnea monitoring. Under the scope of this study, algorithms based on processing solely ECG signal and based on artificial neural network using signals from three channels have been developed for prephase sleep apnea diagnosis. The ECG based detection algorithm uses the variation on Power Spectral Densities (PSDs) of Heart Rate Variability (HRV) and RR interval (RRI) signals obtained from ECGs. In neural network approach, oxygen desaturation, oronasal signal parameters along with heart rate variation are processed as inputs to distributed Time Delayed Neural Network (TDNN).
Author Caglar, O.
Yilmaz, A.
Dundar, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Dundar
  fullname: Dundar, T.
  email: tdundar@mgeo.aselsan.com.tr
  organization: Aselsan AS, MGEO Grubu, Ankara, Turkey
– sequence: 2
  givenname: A.
  surname: Yilmaz
  fullname: Yilmaz, A.
  email: ayilmaz@hacettepe.edu.tr
  organization: H.U. Elektrik ve Elektron. Muh. Bol., Turkey
– sequence: 3
  givenname: O.
  surname: Caglar
  fullname: Caglar, O.
  email: elomer06@hacettepe.edu.tr
  organization: H.U. Elektrik ve Elektron. Muh. Bol., Turkey
BookMark eNp9zzFPAjEYgOEqmAjIbuLy_YE7vrZc7zobDc4IK2muH1xJbZv2JPHfqwmJm9M7PNM7Z9MQAzH2yLHmHPVq-7arBXJeN1rotutu2Jyvm7bFtZLyls2E0rKSiqvJH4hm-gNcNRUq7O7ZspQzInLVCanFjO23niiBSYEMWBqpH10McIwZUqY0mEJgnTmFWFyBz-LCCcbBZQueLuRhiH6kDJn6mO0vWrq4nh7Y3dH4QstrF-zp9eX9eVM5Ijqk7D5M_jpcP-T_-g3izkjt
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SIU.2011.5929788
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1457704633
9781457704635
9781457704611
1457704617
EISSN 2693-3616
EndPage 868
ExternalDocumentID 5929788
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-ieee_primary_59297883
IEDL.DBID RIE
ISBN 1457704625
9781457704628
ISSN 2165-0608
IngestDate Wed Jun 26 19:20:09 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_59297883
ParticipantIDs ieee_primary_5929788
PublicationCentury 2000
PublicationDate 2011-April
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-April
PublicationDecade 2010
PublicationTitle 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)
PublicationTitleAbbrev SIU
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001682392
ssj0000669826
Score 2.9828875
Snippet Sleep Apnea Syndrome (SAS) is generally analysed by an expensive medical routine including polysomnographic overnight recordings. Relatively low cost Holter...
SourceID ieee
SourceType Publisher
StartPage 865
SubjectTerms Artificial neural networks
Conferences
Electrocardiography
Medical diagnostic imaging
Signal processing
Sleep apnea
Title Sleep apnea detection for prephase diagnosis using third level holter recording device
URI https://ieeexplore.ieee.org/document/5929788
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTrDwaBG0gDwwEpqXH5mhFSwIKYDYKie-0EpVGqXJ_8d2HoDUhS1OJOfkU_xdzt99B3DLPCV4FmTaA17qhNIXjmTmu0oVTZIEwzCxrRNi_vIpHudGJueur4VBREs-w3tzac_y1TatTapsRjWW61-2AQx4JJparT6foqEz6kJlm19hwg9sT2TfY9RxmStsXRfl3NRj0k7uqR2L7gjTjWbx83uj7dm-70_jFYs7i-P_WXwC458CPvLaQ9MpHGB-Bke_tAdH8BFvEAsiixwlUVhZSlZOdAxLihKLlUY3ohoe3npHDD3-i1SrdanIxvCMiN41tUtIk-QxDxWaTWcM08X87eHJMVYui0bLYtkaGJzDMN_meAGEpcyPlA4rZMRCSZOIcs9XCc9ChplesEsY7Zthsv_2FA6bLKzhulzBsCprvIbBTtU31n_fnpmY-A
link.rule.ids 310,311,782,786,791,792,798,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ7YelAvPlqj1scePIrlsbvAWdu0sTYmVOONADvYJg0llP5_d5eCmvTijUcWJkx2Z_j2m28A7rklPDd1UukBKzFoZHtGxNW8SgSL4xgpjXXrhMCdfnrPAyWT89DUwiCiJp_hozrUe_lilWwUVNZnMpbLX7YW7DPqumZVrdUgKjJ4-nWyrBEW7tmO7opsW5wZJjc9XdnF5FAq0_5a8Gl77tWbmKbfD8bvlbrn9o1_Wq_oyDM8_p_NJ9D9KeEjb01wOoU9zM7g6Jf6YAc-giViTqI8w4gILDUpKyMyiyV5gflcxjciKibeYk0UQf6LlPNFIchSMY2IXDelU0gF86ibAtWy04XecDB7GhnKyjCv1CzCrYHOObSzVYYXQHjCbV_IxCLyOY1Y7DPXskXsppRjKj_YJXR2PeFq9-U7OBjNXifhZDx96cFhhckq5ss1tMtigzfQWovNrfblN9ZenEM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+19th+Signal+Processing+and+Communications+Applications+Conference+%28SIU%29&rft.atitle=Sleep+apnea+detection+for+prephase+diagnosis+using+third+level+holter+recording+device&rft.au=Dundar%2C+T.&rft.au=Yilmaz%2C+A.&rft.au=Caglar%2C+O.&rft.date=2011-04-01&rft.pub=IEEE&rft.isbn=9781457704628&rft.issn=2165-0608&rft.eissn=2693-3616&rft.spage=865&rft.epage=868&rft_id=info:doi/10.1109%2FSIU.2011.5929788&rft.externalDocID=5929788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0608&client=summon