Sleep apnea detection for prephase diagnosis using third level holter recording device
Sleep Apnea Syndrome (SAS) is generally analysed by an expensive medical routine including polysomnographic overnight recordings. Relatively low cost Holter device has been designed to record some significant physiological signals for sleep apnea at home. The device is capable of recording ECG, resp...
Saved in:
Published in: | 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU) pp. 865 - 868 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-04-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Sleep Apnea Syndrome (SAS) is generally analysed by an expensive medical routine including polysomnographic overnight recordings. Relatively low cost Holter device has been designed to record some significant physiological signals for sleep apnea at home. The device is capable of recording ECG, respiratory effort, oronasal airflow and oxygen saturation data on a high capacity memory card over a long period of time simultaneously for prephase sleep apnea monitoring. Under the scope of this study, algorithms based on processing solely ECG signal and based on artificial neural network using signals from three channels have been developed for prephase sleep apnea diagnosis. The ECG based detection algorithm uses the variation on Power Spectral Densities (PSDs) of Heart Rate Variability (HRV) and RR interval (RRI) signals obtained from ECGs. In neural network approach, oxygen desaturation, oronasal signal parameters along with heart rate variation are processed as inputs to distributed Time Delayed Neural Network (TDNN). |
---|---|
AbstractList | Sleep Apnea Syndrome (SAS) is generally analysed by an expensive medical routine including polysomnographic overnight recordings. Relatively low cost Holter device has been designed to record some significant physiological signals for sleep apnea at home. The device is capable of recording ECG, respiratory effort, oronasal airflow and oxygen saturation data on a high capacity memory card over a long period of time simultaneously for prephase sleep apnea monitoring. Under the scope of this study, algorithms based on processing solely ECG signal and based on artificial neural network using signals from three channels have been developed for prephase sleep apnea diagnosis. The ECG based detection algorithm uses the variation on Power Spectral Densities (PSDs) of Heart Rate Variability (HRV) and RR interval (RRI) signals obtained from ECGs. In neural network approach, oxygen desaturation, oronasal signal parameters along with heart rate variation are processed as inputs to distributed Time Delayed Neural Network (TDNN). |
Author | Caglar, O. Yilmaz, A. Dundar, T. |
Author_xml | – sequence: 1 givenname: T. surname: Dundar fullname: Dundar, T. email: tdundar@mgeo.aselsan.com.tr organization: Aselsan AS, MGEO Grubu, Ankara, Turkey – sequence: 2 givenname: A. surname: Yilmaz fullname: Yilmaz, A. email: ayilmaz@hacettepe.edu.tr organization: H.U. Elektrik ve Elektron. Muh. Bol., Turkey – sequence: 3 givenname: O. surname: Caglar fullname: Caglar, O. email: elomer06@hacettepe.edu.tr organization: H.U. Elektrik ve Elektron. Muh. Bol., Turkey |
BookMark | eNp9zzFPAjEYgOEqmAjIbuLy_YE7vrZc7zobDc4IK2muH1xJbZv2JPHfqwmJm9M7PNM7Z9MQAzH2yLHmHPVq-7arBXJeN1rotutu2Jyvm7bFtZLyls2E0rKSiqvJH4hm-gNcNRUq7O7ZspQzInLVCanFjO23niiBSYEMWBqpH10McIwZUqY0mEJgnTmFWFyBz-LCCcbBZQueLuRhiH6kDJn6mO0vWrq4nh7Y3dH4QstrF-zp9eX9eVM5Ijqk7D5M_jpcP-T_-g3izkjt |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SIU.2011.5929788 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1457704633 9781457704635 9781457704611 1457704617 |
EISSN | 2693-3616 |
EndPage | 868 |
ExternalDocumentID | 5929788 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-ieee_primary_59297883 |
IEDL.DBID | RIE |
ISBN | 1457704625 9781457704628 |
ISSN | 2165-0608 |
IngestDate | Wed Jun 26 19:20:09 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_59297883 |
ParticipantIDs | ieee_primary_5929788 |
PublicationCentury | 2000 |
PublicationDate | 2011-April |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-April |
PublicationDecade | 2010 |
PublicationTitle | 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU) |
PublicationTitleAbbrev | SIU |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001682392 ssj0000669826 |
Score | 2.9828875 |
Snippet | Sleep Apnea Syndrome (SAS) is generally analysed by an expensive medical routine including polysomnographic overnight recordings. Relatively low cost Holter... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 865 |
SubjectTerms | Artificial neural networks Conferences Electrocardiography Medical diagnostic imaging Signal processing Sleep apnea |
Title | Sleep apnea detection for prephase diagnosis using third level holter recording device |
URI | https://ieeexplore.ieee.org/document/5929788 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTrDwaBG0gDwwEpqXH5mhFSwIKYDYKie-0EpVGqXJ_8d2HoDUhS1OJOfkU_xdzt99B3DLPCV4FmTaA17qhNIXjmTmu0oVTZIEwzCxrRNi_vIpHudGJueur4VBREs-w3tzac_y1TatTapsRjWW61-2AQx4JJparT6foqEz6kJlm19hwg9sT2TfY9RxmStsXRfl3NRj0k7uqR2L7gjTjWbx83uj7dm-70_jFYs7i-P_WXwC458CPvLaQ9MpHGB-Bke_tAdH8BFvEAsiixwlUVhZSlZOdAxLihKLlUY3ohoe3npHDD3-i1SrdanIxvCMiN41tUtIk-QxDxWaTWcM08X87eHJMVYui0bLYtkaGJzDMN_meAGEpcyPlA4rZMRCSZOIcs9XCc9ChplesEsY7Zthsv_2FA6bLKzhulzBsCprvIbBTtU31n_fnpmY-A |
link.rule.ids | 310,311,782,786,791,792,798,27936,54770 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ7YelAvPlqj1scePIrlsbvAWdu0sTYmVOONADvYJg0llP5_d5eCmvTijUcWJkx2Z_j2m28A7rklPDd1UukBKzFoZHtGxNW8SgSL4xgpjXXrhMCdfnrPAyWT89DUwiCiJp_hozrUe_lilWwUVNZnMpbLX7YW7DPqumZVrdUgKjJ4-nWyrBEW7tmO7opsW5wZJjc9XdnF5FAq0_5a8Gl77tWbmKbfD8bvlbrn9o1_Wq_oyDM8_p_NJ9D9KeEjb01wOoU9zM7g6Jf6YAc-giViTqI8w4gILDUpKyMyiyV5gflcxjciKibeYk0UQf6LlPNFIchSMY2IXDelU0gF86ibAtWy04XecDB7GhnKyjCv1CzCrYHOObSzVYYXQHjCbV_IxCLyOY1Y7DPXskXsppRjKj_YJXR2PeFq9-U7OBjNXifhZDx96cFhhckq5ss1tMtigzfQWovNrfblN9ZenEM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+19th+Signal+Processing+and+Communications+Applications+Conference+%28SIU%29&rft.atitle=Sleep+apnea+detection+for+prephase+diagnosis+using+third+level+holter+recording+device&rft.au=Dundar%2C+T.&rft.au=Yilmaz%2C+A.&rft.au=Caglar%2C+O.&rft.date=2011-04-01&rft.pub=IEEE&rft.isbn=9781457704628&rft.issn=2165-0608&rft.eissn=2693-3616&rft.spage=865&rft.epage=868&rft_id=info:doi/10.1109%2FSIU.2011.5929788&rft.externalDocID=5929788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0608&client=summon |