A review of image-based insulator defect detection algorithms for transmission lines
insulator defect detection plays a very important role in ensuring the safety of transmission lines. Accurate and fast detection algorithms can help operation and maintenance personnel quickly locate the position of defective insulators and replace them in a timely manner. Unmanned aerial vehicles (...
Saved in:
Published in: | 2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL) pp. 718 - 724 |
---|---|
Main Authors: | , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
19-04-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | insulator defect detection plays a very important role in ensuring the safety of transmission lines. Accurate and fast detection algorithms can help operation and maintenance personnel quickly locate the position of defective insulators and replace them in a timely manner. Unmanned aerial vehicles (UAV) are currently the most ideal new type of line inspection method, which can effectively overcome the shortcomings of manual inspection and have been widely used in overhead transmission line inspection. This article focuses on the detection scenarios of insulator defects in overhead transmission lines, summarizes commonly used deep learning object detection algorithms, compares the detection strategies, detection accuracy, and detection speed of different algorithms, analyzes the challenges faced in insulator defect detection in response to the shortcomings of existing insulator detection, and provides prospects. |
---|---|
AbstractList | insulator defect detection plays a very important role in ensuring the safety of transmission lines. Accurate and fast detection algorithms can help operation and maintenance personnel quickly locate the position of defective insulators and replace them in a timely manner. Unmanned aerial vehicles (UAV) are currently the most ideal new type of line inspection method, which can effectively overcome the shortcomings of manual inspection and have been widely used in overhead transmission line inspection. This article focuses on the detection scenarios of insulator defects in overhead transmission lines, summarizes commonly used deep learning object detection algorithms, compares the detection strategies, detection accuracy, and detection speed of different algorithms, analyzes the challenges faced in insulator defect detection in response to the shortcomings of existing insulator detection, and provides prospects. |
Author | Li, Xiaomian Blancaflor, Eric B. |
Author_xml | – sequence: 1 givenname: Xiaomian surname: Li fullname: Li, Xiaomian email: xli@mymail.mapua.edu.ph organization: Mapua University,School of Information Technology,Manila,Philippines – sequence: 2 givenname: Eric B. surname: Blancaflor fullname: Blancaflor, Eric B. email: ebblancaflor@mapua.edu.ph organization: Mapua University,School of Information Technology,Manila,Philippines |
BookMark | eNqFzrsKwjAYhuEIOnjoHTjkBlpz6HGUqig4FtcS7d8aSBNJouLdW0Fnp3d4hu-bobE2GhDClESUkmJVng6bY8ponEWMsDiiJCU8ZckIBUVW5DwhPOM5I1NUrbGFh4QnNi2WveggPAsHDZba3ZXwxuIGWrj4IX6INBoL1Rkr_bV3uB3cW6FdL537mJIa3AJNWqEcBN_O0XK3rcp9KAGgvtlhx77q3yn-h98RIkGZ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CVIDL62147.2024.10603625 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350373820 |
EndPage | 724 |
ExternalDocumentID | 10603625 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-ieee_primary_106036253 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 07 05:30:59 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_106036253 |
ParticipantIDs | ieee_primary_10603625 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-19 |
PublicationDateYYYYMMDD | 2024-04-19 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | 2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL) |
PublicationTitleAbbrev | CVIDL |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 3.838864 |
Snippet | insulator defect detection plays a very important role in ensuring the safety of transmission lines. Accurate and fast detection algorithms can help operation... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 718 |
SubjectTerms | Accuracy Autonomous aerial vehicles Deep learning Inspection Insulator defect detection Insulators Power transmission lines Reviews YOLOv |
Title | A review of image-based insulator defect detection algorithms for transmission lines |
URI | https://ieeexplore.ieee.org/document/10603625 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH7YOXlSseIySg5eM6ZtuuQoszCCiOAg3oa0eVXBacW2_3_yUjoi6MFTQghJyPaWfF8ewLXVWVUalHbz6iLhMlc5z5RGHiqJgQxKIQriOy-f0oeXbDanb3L4jguDiA58hhPKurd8UxcducrsCU_owo098FKV9WStAZ0j1M30-W52n1DgHWv3hXIyVP8ROMXJjcXBP3s8BP-bgcced7LlCPawOobVLeuZJqwu2fvG3gSchJBhDlBO1jMzSPAMm7QOYlUx_fFaW_v_bdMwq56ylkSTXVrykTHSMBsfxov5arrkNKz1Z__5xHoYUXQCo6qu8BRYWmit8gCFLDMZoczDxAgTmzzSpC7EZ-D_2sT5H-UXsE_zR28mgRrDqP3q8BK8xnRXbsq3QZmIiQ |
link.rule.ids | 310,311,782,786,791,792,798,27935,54769 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7c9aAnFSs-Vs3Ba9c-0keOsg-6WBfBIt5K2qS64LbLtv3_ZlK6IujBU0IgD_KYmWS-LwNwp2xWFtiF2rw8902ascwMGZemw6i0qV1YVo585-glWL6F0xl-k2PuuDBSSg0-k2PMal--qPIWn8rUCfdR4HoD2Pdo4LOOrtXjcyx2P3ldTGMfQ--om59Dx32FH6FTtOaYH_2zz2Mwvjl45HmnXU5gT5ankDyQjmtCqoKs1koWmKiGBNGQcrw_EyERoKGSRoOsSsI_36vtqvlY10QZqKRB5aQWF1_JCNqYtQGj-SyZRCYOK91030-k_YjcMxiWVSnPgQQ55yyzpUWLkLqSZo4vLOGJzOVoMHgXYPzaxOUf5bdwECVPcRovlo9XcIhziR4Um41g2GxbeQ2DWrQ3evq_AKIBi9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+International+Conference+on+Computer+Vision%2C+Image+and+Deep+Learning+%28CVIDL%29&rft.atitle=A+review+of+image-based+insulator+defect+detection+algorithms+for+transmission+lines&rft.au=Li%2C+Xiaomian&rft.au=Blancaflor%2C+Eric+B.&rft.date=2024-04-19&rft.pub=IEEE&rft.spage=718&rft.epage=724&rft_id=info:doi/10.1109%2FCVIDL62147.2024.10603625&rft.externalDocID=10603625 |