A review of image-based insulator defect detection algorithms for transmission lines

insulator defect detection plays a very important role in ensuring the safety of transmission lines. Accurate and fast detection algorithms can help operation and maintenance personnel quickly locate the position of defective insulators and replace them in a timely manner. Unmanned aerial vehicles (...

Full description

Saved in:
Bibliographic Details
Published in:2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL) pp. 718 - 724
Main Authors: Li, Xiaomian, Blancaflor, Eric B.
Format: Conference Proceeding
Language:English
Published: IEEE 19-04-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract insulator defect detection plays a very important role in ensuring the safety of transmission lines. Accurate and fast detection algorithms can help operation and maintenance personnel quickly locate the position of defective insulators and replace them in a timely manner. Unmanned aerial vehicles (UAV) are currently the most ideal new type of line inspection method, which can effectively overcome the shortcomings of manual inspection and have been widely used in overhead transmission line inspection. This article focuses on the detection scenarios of insulator defects in overhead transmission lines, summarizes commonly used deep learning object detection algorithms, compares the detection strategies, detection accuracy, and detection speed of different algorithms, analyzes the challenges faced in insulator defect detection in response to the shortcomings of existing insulator detection, and provides prospects.
AbstractList insulator defect detection plays a very important role in ensuring the safety of transmission lines. Accurate and fast detection algorithms can help operation and maintenance personnel quickly locate the position of defective insulators and replace them in a timely manner. Unmanned aerial vehicles (UAV) are currently the most ideal new type of line inspection method, which can effectively overcome the shortcomings of manual inspection and have been widely used in overhead transmission line inspection. This article focuses on the detection scenarios of insulator defects in overhead transmission lines, summarizes commonly used deep learning object detection algorithms, compares the detection strategies, detection accuracy, and detection speed of different algorithms, analyzes the challenges faced in insulator defect detection in response to the shortcomings of existing insulator detection, and provides prospects.
Author Li, Xiaomian
Blancaflor, Eric B.
Author_xml – sequence: 1
  givenname: Xiaomian
  surname: Li
  fullname: Li, Xiaomian
  email: xli@mymail.mapua.edu.ph
  organization: Mapua University,School of Information Technology,Manila,Philippines
– sequence: 2
  givenname: Eric B.
  surname: Blancaflor
  fullname: Blancaflor, Eric B.
  email: ebblancaflor@mapua.edu.ph
  organization: Mapua University,School of Information Technology,Manila,Philippines
BookMark eNqFzrsKwjAYhuEIOnjoHTjkBlpz6HGUqig4FtcS7d8aSBNJouLdW0Fnp3d4hu-bobE2GhDClESUkmJVng6bY8ponEWMsDiiJCU8ZckIBUVW5DwhPOM5I1NUrbGFh4QnNi2WveggPAsHDZba3ZXwxuIGWrj4IX6INBoL1Rkr_bV3uB3cW6FdL537mJIa3AJNWqEcBN_O0XK3rcp9KAGgvtlhx77q3yn-h98RIkGZ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CVIDL62147.2024.10603625
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350373820
EndPage 724
ExternalDocumentID 10603625
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-ieee_primary_106036253
IEDL.DBID RIE
IngestDate Wed Aug 07 05:30:59 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_106036253
ParticipantIDs ieee_primary_10603625
PublicationCentury 2000
PublicationDate 2024-April-19
PublicationDateYYYYMMDD 2024-04-19
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-19
  day: 19
PublicationDecade 2020
PublicationTitle 2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL)
PublicationTitleAbbrev CVIDL
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 3.838864
Snippet insulator defect detection plays a very important role in ensuring the safety of transmission lines. Accurate and fast detection algorithms can help operation...
SourceID ieee
SourceType Publisher
StartPage 718
SubjectTerms Accuracy
Autonomous aerial vehicles
Deep learning
Inspection
Insulator defect detection
Insulators
Power transmission lines
Reviews
YOLOv
Title A review of image-based insulator defect detection algorithms for transmission lines
URI https://ieeexplore.ieee.org/document/10603625
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH7YOXlSseIySg5eM6ZtuuQoszCCiOAg3oa0eVXBacW2_3_yUjoi6MFTQghJyPaWfF8ewLXVWVUalHbz6iLhMlc5z5RGHiqJgQxKIQriOy-f0oeXbDanb3L4jguDiA58hhPKurd8UxcducrsCU_owo098FKV9WStAZ0j1M30-W52n1DgHWv3hXIyVP8ROMXJjcXBP3s8BP-bgcced7LlCPawOobVLeuZJqwu2fvG3gSchJBhDlBO1jMzSPAMm7QOYlUx_fFaW_v_bdMwq56ylkSTXVrykTHSMBsfxov5arrkNKz1Z__5xHoYUXQCo6qu8BRYWmit8gCFLDMZoczDxAgTmzzSpC7EZ-D_2sT5H-UXsE_zR28mgRrDqP3q8BK8xnRXbsq3QZmIiQ
link.rule.ids 310,311,782,786,791,792,798,27935,54769
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7c9aAnFSs-Vs3Ba9c-0keOsg-6WBfBIt5K2qS64LbLtv3_ZlK6IujBU0IgD_KYmWS-LwNwp2xWFtiF2rw8902ascwMGZemw6i0qV1YVo585-glWL6F0xl-k2PuuDBSSg0-k2PMal--qPIWn8rUCfdR4HoD2Pdo4LOOrtXjcyx2P3ldTGMfQ--om59Dx32FH6FTtOaYH_2zz2Mwvjl45HmnXU5gT5ankDyQjmtCqoKs1koWmKiGBNGQcrw_EyERoKGSRoOsSsI_36vtqvlY10QZqKRB5aQWF1_JCNqYtQGj-SyZRCYOK91030-k_YjcMxiWVSnPgQQ55yyzpUWLkLqSZo4vLOGJzOVoMHgXYPzaxOUf5bdwECVPcRovlo9XcIhziR4Um41g2GxbeQ2DWrQ3evq_AKIBi9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+International+Conference+on+Computer+Vision%2C+Image+and+Deep+Learning+%28CVIDL%29&rft.atitle=A+review+of+image-based+insulator+defect+detection+algorithms+for+transmission+lines&rft.au=Li%2C+Xiaomian&rft.au=Blancaflor%2C+Eric+B.&rft.date=2024-04-19&rft.pub=IEEE&rft.spage=718&rft.epage=724&rft_id=info:doi/10.1109%2FCVIDL62147.2024.10603625&rft.externalDocID=10603625