Soybean Fertilized by P-Phases from Bagasse-Based Materials: P-Extraction Procedures, Diffusive Gradients in Thin Films
The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plan...
Saved in:
Published in: | Agronomy (Basel) Vol. 10; no. 6; p. 1 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-06-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plant nutrients, which allow the ash to be used as a crop fertilizer. However, the concentration and extractability of phosphorus (P), an essential plant nutrient, are low in bagasse ash. To increase the P content, we co-gasified and co-combusted bagasse with P-rich chicken manure. The resulting ash was thermochemically post-treated with alkali additives ([Na.sub.2]S[O.sub.4] and [K.sub.2]S[O.sub.4]) to increase the availability of P to plants. We aimed to: (i) investigate the effect of thermochemical post-treatment of co-gasification residue and co-combustion ash on P availability to soybeans, (ii) explore the potential of chemical extraction methods (citric acid, neutral ammonium citrate, formic acid, and Mehlich-I) and diffusive gradients in thin films (DGT) to predict the availability of P to soybeans, and (iii) identify the responsible P-phases using X-ray diffraction. We evaluated P availability to soybeans growing in Brazilian Oxisol soil in two independent greenhouse pot experiments. The positive effect of thermochemical treatment on P availability from gasification residue was confirmed through the observation of increased P uptake and biomass in soybean plants. These findings were confirmed by chemical extraction methods and DGT. The gasification residue contained whitlockite as its main P-bearing phase. Thermochemical post-treatment converted whitlockite into highly soluble CaNaP[O.sub.4]. In contrast, co-combustion ash already contained highly soluble Ca(Na,K)P[O.sub.4] as its main P-bearing phase, making thermochemical post-treatment unnecessary for increasing P availability. In conclusion, increased extractability and availability of P for soybeans were closely connected to the formation of calcium alkali phosphate. Our findings indicate that this combined methodology allows for the prediction of P-fertilization effects of ash. |
---|---|
AbstractList | The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plant nutrients, which allow the ash to be used as a crop fertilizer. However, the concentration and extractability of phosphorus (P), an essential plant nutrient, are low in bagasse ash. To increase the P content, we co-gasified and co-combusted bagasse with P-rich chicken manure. The resulting ash was thermochemically post-treated with alkali additives ([Na.sub.2]S[O.sub.4] and [K.sub.2]S[O.sub.4]) to increase the availability of P to plants. We aimed to: (i) investigate the effect of thermochemical post-treatment of co-gasification residue and co-combustion ash on P availability to soybeans, (ii) explore the potential of chemical extraction methods (citric acid, neutral ammonium citrate, formic acid, and Mehlich-I) and diffusive gradients in thin films (DGT) to predict the availability of P to soybeans, and (iii) identify the responsible P-phases using X-ray diffraction. We evaluated P availability to soybeans growing in Brazilian Oxisol soil in two independent greenhouse pot experiments. The positive effect of thermochemical treatment on P availability from gasification residue was confirmed through the observation of increased P uptake and biomass in soybean plants. These findings were confirmed by chemical extraction methods and DGT. The gasification residue contained whitlockite as its main P-bearing phase. Thermochemical post-treatment converted whitlockite into highly soluble CaNaP[O.sub.4]. In contrast, co-combustion ash already contained highly soluble Ca(Na,K)P[O.sub.4] as its main P-bearing phase, making thermochemical post-treatment unnecessary for increasing P availability. In conclusion, increased extractability and availability of P for soybeans were closely connected to the formation of calcium alkali phosphate. Our findings indicate that this combined methodology allows for the prediction of P-fertilization effects of ash. |
Audience | Academic |
Author | Herzel, Hannes Vogel, Christian Levandowski, Gabriel Vettorazzi Meiller, Martin Zang, Joachim Werner Dombinov, Vitalij Schrey, Silvia Diane Jablonowski, Nicolai David Adam, Christian Willbold, Sabine da Fonseca-Zang, Warde Antonieta Muller, Felix |
Author_xml | – sequence: 1 fullname: Herzel, Hannes – sequence: 2 fullname: Dombinov, Vitalij – sequence: 3 fullname: Vogel, Christian – sequence: 4 fullname: Willbold, Sabine – sequence: 5 fullname: Levandowski, Gabriel Vettorazzi – sequence: 6 fullname: Meiller, Martin – sequence: 7 fullname: Muller, Felix – sequence: 8 fullname: Zang, Joachim Werner – sequence: 9 fullname: da Fonseca-Zang, Warde Antonieta – sequence: 10 fullname: Jablonowski, Nicolai David – sequence: 11 fullname: Schrey, Silvia Diane – sequence: 12 fullname: Adam, Christian |
BookMark | eNqNjDFPwzAUhC1UJAp0Z3wSKwEnbtKGjdIGFqRIdK_c5Dl9KLElPxcIvx4jMTByw93p9OnOxcQ6i0JcpfJWqVLe6c4764YxlbKQyzI_EdNMLlQyV2U--dPPxIz5TUaVqVrKxVR8vLpxj9pChT5QT1_Ywn6EOqkPmpHBeDfASneaGZNVnFp40QE96Z7vI7b5DF43gZyF2rsG26NHvoE1GXNkekd48roltIGBLGwP0SrqB74UpyZe4Ow3L8R1tdk-Pied7nFH1rif34G42T0USs2zPMsL9T_qGyDEVik |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG |
DOI | 10.3390/agronomy10060895 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | A633425256 |
GeographicLocations | Brazil Germany |
GeographicLocations_xml | – name: Germany – name: Brazil |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU ECGQY GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PATMY PIMPY PROAC PYCSY |
ID | FETCH-gale_infotracmisc_A6334252563 |
ISSN | 2073-4395 |
IngestDate | Tue Nov 19 20:46:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-gale_infotracmisc_A6334252563 |
ParticipantIDs | gale_infotracmisc_A633425256 |
PublicationCentury | 2000 |
PublicationDate | 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 20200601 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
SSID | ssj0000913807 |
Score | 4.346037 |
Snippet | The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar... |
SourceID | gale |
SourceType | Aggregation Database |
StartPage | 1 |
SubjectTerms | Combustion Fertilizers Formic acid Organic acids Phosphates Soybeans Sugarcane X-ray diffraction |
Title | Soybean Fertilized by P-Phases from Bagasse-Based Materials: P-Extraction Procedures, Diffusive Gradients in Thin Films |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT8IwFG8AL3owfsYPNE30houwTWDeQAbzYpZAjDeysQ5ncEvGpsJf73vtvjCE6MFLs3RZ2_T98utr9-t7hFzLjgbbBMuVJrCcSGpLVYEH3YlkY_AyBQiRcZWvMWw9vbR7uqqXSmkKrrzuXy0NdWBrvDn7B2tnjUIFPIPNoQSrQ_kruw-DhY2n630UTM-8pfAwTcl8hfVqLq6TdK0p-MxM6kIVyiwiMTA8HTAl_SsKkwTi_BaBE4eCSnqe68Zc7T4IuVAs4lpazPxZ63uzJOx5GtF2GvLrEujBYjezwpGDwcKlEAcYFtB8nto-eId9evDBtbeYzMR7S189B1PxhQiGUMA0Hhilqa-Hlp3KBJKDDLmeC66EmKlnPtY6g5z_ZGAfCfwl8dObralLCbxeAGqRjRvr1ghF0VBUaSXT0MCINO20k5XI252mogClgVNYJlsyEFlxy85Xeq2hiBv52bjEn3Ds4_ZnD8miX3BfRntkN9l30I4AzD4pMf-A7ICVktgr7JB8JtChOXSovaApdChCh65Ah2bQuadF4NAcODc0gw3NYEM9nyJsKIfNEbnq66MHQ8Jxj3ESsR3gn8k4nxvlmFT8wGcnhKqOpTq25t45mq1aVtt2gSIYFODnOjJrnpLqppbONr8-J9s5bKqkEoUxuyDluRNfcrN8A2ojaM0 |
link.rule.ids | 315,782,786,866,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soybean+Fertilized+by+P-Phases+from+Bagasse-Based+Materials%3A+P-Extraction+Procedures%2C+Diffusive+Gradients+in+Thin+Films&rft.jtitle=Agronomy+%28Basel%29&rft.au=Herzel%2C+Hannes&rft.au=Dombinov%2C+Vitalij&rft.au=Vogel%2C+Christian&rft.au=Willbold%2C+Sabine&rft.date=2020-06-01&rft.pub=MDPI+AG&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=10&rft.issue=6&rft.spage=1&rft_id=info:doi/10.3390%2Fagronomy10060895&rft.externalDocID=A633425256 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |