The IInfierno/I Glacier : Evolution 2016–2022

The Infierno Glacier is located in Aragon (Spain), Pyrenees Mountain range, the only one in this country that still preserves white glaciers. These are the southernmost glaciers in Europe and are currently in rapid decline. The work analyzes the evolution of the glacier between 2016 and 2022 and pro...

Full description

Saved in:
Bibliographic Details
Published in:Geosciences (Basel) Vol. 13; no. 2
Main Authors: Cancer-Pomar, Luis, Fernández-Jarne, Gonzalo, Cuchí, José Antonio, del Valle-Melendo, Javier
Format: Journal Article
Language:English
Published: MDPI AG 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Infierno Glacier is located in Aragon (Spain), Pyrenees Mountain range, the only one in this country that still preserves white glaciers. These are the southernmost glaciers in Europe and are currently in rapid decline. The work analyzes the evolution of the glacier between 2016 and 2022 and provides data, for this period, which lacked this information, in an area bordering the glacial ice survival. In addition to the observations on the glacier itself, the variables (precipitation, temperature, snow volume and thickness) that allow an understanding of this evolution are studied. The results show a setback of the glacier (thickness losses: 4.6 m; front retreat; 14.9 m). The evolution has frequent trend changes, linked to the interannual climatic irregularity characteristic of the Pyrenees. The main explanatory factor is the thermal increase. The thermal anomalies with respect to the average reference values have increased, in this period, by +0.55 °C. The year 2022 has been particularly warm and has recorded the greatest losses for this glacier. With respect to precipitation, it has an irregular behavior and shows a tendency to decrease (−9% in the same period). This work has the additional interest of analyzing a glacier in the terminal phase, which if current trends continue, evolves into dead ice.
ISSN:2076-3263
2076-3263
DOI:10.3390/geosciences13020040