Multiobjective topology optimization of planar trusses using stress trajectories and metaheuristic algorithms/Optimizacion topologica multiobjetivo de armaduras planas usando trayectorias de esfuerzo y algoritmos metaheuristicos

In civil engineering, structural optimization seeks an efficient use of material resources and the automatization of the design process of a wide range of structures such as frames, bridges, and other systems. This work develops a novel multiobjective topology optimization process to minimize planar...

Full description

Saved in:
Bibliographic Details
Published in:Revista Facultad de Ingeniería no. 107; p. 9
Main Authors: Nino-Alvarez, Luis Humberto, Begambre-Carrillo, Oscar Javier
Format: Journal Article
Language:Spanish
Published: Universidad de Antioquia, Facultad de Ingenieria 01-04-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In civil engineering, structural optimization seeks an efficient use of material resources and the automatization of the design process of a wide range of structures such as frames, bridges, and other systems. This work develops a novel multiobjective topology optimization process to minimize planar trusses' weight and strain energy. In the initial stage, an optimized discrete geometry of the ground structure is generated from a continuum design space with general boundary conditions (loads and supports) using the stress trajectories theory. In the final stage, size optimization is performed using the concept of Envelope Pareto Front (EVP), which is obtained from the best solutions provided by three efficient multiobjective metaheuristic algorithms (NSGA-II, MOPSO and AMOSA). The results obtained on a large-scale truss (200 m span continuous bridge) showed that innovative geometries could be found (new connectivity patterns). The generation of an EVP allows getting a more significant number of non-dominated solutions, exploring a broader region of the Pareto front and the two objective functions, achieving greater convergence and diversity than the algorithms' individual performance. The computation cost of the optimization strategy was satisfactory, which allows its potential implementation in actual large-scale trusses, discovering optimized, innovative solutions for this type of structures. En ingenieria civil, la optimizacion estructural busca un uso eficiente de recursos materiales y la automatizacion del proceso de diseño de un amplio rango de estructuras como porticos y puentes, entre otros sistemas. En este trabajo se desarrolla un novedoso proceso de optimizacion topologica multiobjetivo para minimizar el peso y la energia de deformacion de armaduras planas. En una fase inicial, una geometria discreta optimizada de la estructura base es generada a partir de un espacio de diseño continuo con condiciones de borde conocidas (cargas y apoyos) usando la teoria de las trayectorias de esfuerzo. En la fase final, se ejecuta optimizacion de tamaño usando el concepto de frente de Pareto Envolvente (EVP), que se obtiene de las mejores soluciones proporcionadas por tres algoritmos metaheuristicos de optimizacion multiobjetivo (NSGA-II, MOPSO y AMOSA) eficientes. Los resultados obtenidos en una estructura de gran escala (Puente continuo de 200 m de luz) mostraron que, usando el proceso propuesto, pueden encontrarse geometrias innovadoras (nuevos patrones de conectividad), y la generacion de un EVP que permite obtener un mayor número de soluciones no dominadas a lo largo de las dos funciones objetivo, logrando una mayor convergencia y diversidad en comparacion con el desempeño individual de los algoritmos. KEYWORDS: Multi-objective; topology optimization; large scale truss; stress trajectories; metaheuristic algorithms multiobjetivo; optimizacion topologica; armadura de gran escala; trayectorias de esfuerzo; algoritmos metaheuristicos
ISSN:0120-6230
DOI:10.17533/udea.redin.20220576