HFrEF subphenotypes based on 4210 repeatedly measured circulating proteins are driven by different biological mechanismsResearch in context

Background: HFrEF is a heterogenous condition with high mortality. We used serial assessments of 4210 circulating proteins to identify distinct novel protein-based HFrEF subphenotypes and to investigate underlying dynamic biological mechanisms. Herewith we aimed to gain pathophysiological insights a...

Full description

Saved in:
Bibliographic Details
Published in:EBioMedicine Vol. 93; p. 104655
Main Authors: Teun B. Petersen, Marie de Bakker, Folkert W. Asselbergs, Magdalena Harakalova, K. Martijn Akkerhuis, Jasper J. Brugts, Jan van Ramshorst, R. Thomas Lumbers, Rachel M. Ostroff, Peter D. Katsikis, Peter J. van der Spek, Victor A. Umans, Eric Boersma, Dimitris Rizopoulos, Isabella Kardys
Format: Journal Article
Language:English
Published: Elsevier 01-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: HFrEF is a heterogenous condition with high mortality. We used serial assessments of 4210 circulating proteins to identify distinct novel protein-based HFrEF subphenotypes and to investigate underlying dynamic biological mechanisms. Herewith we aimed to gain pathophysiological insights and fuel opportunities for personalised treatment. Methods: In 382 patients, we performed trimonthly blood sampling during a median follow-up of 2.1 [IQR:1.1–2.6] years. We selected all baseline samples and two samples closest to the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, LVAD implantation, and heart transplantation) or censoring, and applied an aptamer-based multiplex proteomic approach. Using unsupervised machine learning methods, we derived clusters from 4210 repeatedly measured proteomic biomarkers. Sets of proteins that drove cluster allocation were analysed via an enrichment analysis. Differences in clinical characteristics and PEP occurrence were evaluated. Findings: We identified four subphenotypes with different protein profiles, prognosis and clinical characteristics, including age (median [IQR] for subphenotypes 1–4, respectively:70 [64, 76], 68 [60, 79], 57 [47, 65], 59 [56, 66]years), EF (30 [26, 36], 26 [20, 38], 26 [22, 32], 33 [28, 37]%), and chronic renal failure (45%, 65%, 36%, 37%). Subphenotype allocation was driven by subsets of proteins associated with various biological functions, such as oxidative stress, inflammation and extracellular matrix organisation. Clinical characteristics of the subphenotypes were aligned with these associations. Subphenotypes 2 and 3 had the worst prognosis compared to subphenotype 1 (adjHR (95%CI):3.43 (1.76–6.69), and 2.88 (1.37–6.03), respectively). Interpretation: Four circulating-protein based subphenotypes are present in HFrEF, which are driven by varying combinations of protein subsets, and have different clinical characteristics and prognosis. Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT01851538 https://clinicaltrials.gov/ct2/show/NCT01851538. Funding: EU/EFPIA IMI2JU BigData@Heart grant n°116074, Jaap Schouten Foundation and Noordwest Academie.
ISSN:2352-3964
2352-3964