Stability and bifurcation analysis in a predator prey model involving additive Allee effect

In this paper we study codimension 1 Hopf bifurcation for a two dimensional autonomous nonlinear ordinary differential equations system, modeling a predator-prey interaction with Holling type II functional response and additive Allee effect in the prey equation. Positivity, dissipation, boundedness...

Full description

Saved in:
Bibliographic Details
Published in:Revista integración, temas de matematicas Vol. 42; no. 2
Main Authors: Jocirei Dias Ferreira, Wilmer Libardo Molina Yepez, Jaime Tobar Muñoz
Format: Journal Article
Language:Spanish
Published: Universidad Industrial de Santander 01-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we study codimension 1 Hopf bifurcation for a two dimensional autonomous nonlinear ordinary differential equations system, modeling a predator-prey interaction with Holling type II functional response and additive Allee effect in the prey equation. Positivity, dissipation, boundedness and permanence of the solutions are analyzed. Furthermore, stability and bifurcation analysis are carried out to show the existence of periodic orbits due to the occurrence of codimension 1 Hopf bifurcation, involving weak Allee effect as well as strong Allee effect. In the case of strong Allee effect, through computer simulations carried in MAPLE 13, we conjecture that this model may admit a heteroclinic bifurcation. We present some simulations which allow one to verify the analytical results.
AbstractList In this paper we study codimension 1 Hopf bifurcation for a two dimensional autonomous nonlinear ordinary differential equations system, modeling a predator-prey interaction with Holling type II functional response and additive Allee effect in the prey equation. Positivity, dissipation, boundedness and permanence of the solutions are analyzed. Furthermore, stability and bifurcation analysis are carried out to show the existence of periodic orbits due to the occurrence of codimension 1 Hopf bifurcation, involving weak Allee effect as well as strong Allee effect. In the case of strong Allee effect, through computer simulations carried in MAPLE 13, we conjecture that this model may admit a heteroclinic bifurcation. We present some simulations which allow one to verify the analytical results.
Author Jaime Tobar Muñoz
Wilmer Libardo Molina Yepez
Jocirei Dias Ferreira
Author_xml – sequence: 1
  fullname: Jocirei Dias Ferreira
  organization: Federal University of Mato Grosso
– sequence: 2
  fullname: Wilmer Libardo Molina Yepez
  organization: University of the Cauca
– sequence: 3
  fullname: Jaime Tobar Muñoz
  organization: Universidad del Cauca
BookMark eNqtjEFqwzAUREVJoU6bO-gCBtmW4npZSkuzThaBLMSP9BV-UKQgqQbfvm7IETKbeTMDs2SLEAM-saptpKrfZd8uWCWaVtSyGfYvbJXzWcxaCyV6VbHDtsCRPJWJQ7D8SO43GSgUw5zBT5kyp5n5NaGFEtM_TPwSLfp5GKMfKZw4WEuFRuQf3iNydA5NeWPPDnzG1d1f2eb7a_f5U9sIZ31NdIE06Qikb0VMJw2pkPGoUfUdtOiGzoEE24FVEp0ENNKt0QzdI7_-ACrhY5A
ContentType Journal Article
DBID DOA
DatabaseName Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2145-8472
ExternalDocumentID oai_doaj_org_article_e573a2ef93fa4ad3ad54ef4aec4f6ec9
GroupedDBID ADBBV
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
B14
BCNDV
FAEIB
GROUPED_DOAJ
KQ8
OK1
RTK
SCD
ID FETCH-doaj_primary_oai_doaj_org_article_e573a2ef93fa4ad3ad54ef4aec4f6ec93
IEDL.DBID DOA
ISSN 0120-419X
IngestDate Tue Oct 22 15:14:55 EDT 2024
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language Spanish
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_e573a2ef93fa4ad3ad54ef4aec4f6ec93
OpenAccessLink https://doaj.org/article/e573a2ef93fa4ad3ad54ef4aec4f6ec9
ParticipantIDs doaj_primary_oai_doaj_org_article_e573a2ef93fa4ad3ad54ef4aec4f6ec9
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Revista integración, temas de matematicas
PublicationYear 2024
Publisher Universidad Industrial de Santander
Publisher_xml – name: Universidad Industrial de Santander
SSID ssj0000605075
ssib051071363
ssib026971875
Score 4.6297803
Snippet In this paper we study codimension 1 Hopf bifurcation for a two dimensional autonomous nonlinear ordinary differential equations system, modeling a...
SourceID doaj
SourceType Open Website
SubjectTerms Allee effect
boundedness
dissipation
permanence
positivity
Predator-prey system
Title Stability and bifurcation analysis in a predator prey model involving additive Allee effect
URI https://doaj.org/article/e573a2ef93fa4ad3ad54ef4aec4f6ec9
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED1BJxgQn-JbHlgjGttJnLFAKxhggaESQ-TEZ6lSVaqEDP33vYujAhMDbHYiOdbFOd-7PL8DuDGEdCrpbZR4byKdlC4qEenDi5U3WJZcdJVTF6_Zy9Q8jFkmZ1PqizlhQR44GO4Wk0xZiT5X3mrrlHWJRq8tVtqnWIWje8P0G5iilSTTnHzu18ZIC4_AWC80FXz0MAkqvHx4lH-FTn-I9ne7y2Qf9vqwUIzCdA5gC5tD2H3eaKo2R_BOcWHHZF0JQv-inPm2Dvk26gdlETGjtljW6BhKc2MlulI3dIPcEOcOBBOI2MWJ0XyOKAKf4xieJuO3-8eI51YsgwJFwZrQ3QWyVNFbqvjNUuoEBouPBZ6CkFXs4tR6lyutKYQwEmWWGctSND7O_Rnc_f155_8xyAXsSAojAuXuEgafdYtXsN249rp742vM9bl_
link.rule.ids 315,782,786,2106
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+bifurcation+analysis+in+a+predator+prey+model+involving+additive+Allee+effect&rft.jtitle=Revista+integraci%C3%B3n%2C+temas+de+matematicas&rft.au=Jocirei+Dias+Ferreira&rft.au=Wilmer+Libardo+Molina+Yepez&rft.au=Jaime+Tobar+Mu%C3%B1oz&rft.date=2024-08-01&rft.pub=Universidad+Industrial+de+Santander&rft.issn=0120-419X&rft.eissn=2145-8472&rft.volume=42&rft.issue=2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e573a2ef93fa4ad3ad54ef4aec4f6ec9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0120-419X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0120-419X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0120-419X&client=summon