Mid-long term power load forecasting based variable selection and transformer model(基于变量选择与Transformer模型的中长期电力负荷预测方法)

Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems. In this paper, a prediction model that incorporates variable selection and sparse Transformer is proposed. Static and temporal variables are used as inputs to give full play to the inf...

Full description

Saved in:
Bibliographic Details
Published in:Zhejiang da xue xue bao. Journal of Zhejiang University. Sciences edition. Li xue ban Vol. 51; no. 4; pp. 483 - 491
Main Authors: 黄文琦(HUANG Wenqi), 梁凌宇(LIANG Lingyu), 王鑫(WANG Xin), 赵翔宇(ZHAO Xiangyu), 宗珂(ZONG Ke), 孙凌云(SUN Lingyun)
Format: Journal Article
Language:Chinese
Published: Zhejiang University Press 01-07-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems. In this paper, a prediction model that incorporates variable selection and sparse Transformer is proposed. Static and temporal variables are used as inputs to give full play to the information enhancement of static variables in the global time range. The variable weighting component is designed based on the gating mechanism with which different weights are assigned to the variables according to their relevance to the predicted output. A two-layer coding structure is designed for temporal feature extraction, attention is sparse, and future moment loads are predicted by multivariate inputs. The proposed model is validated using real power load data, and the experimental results show that it can improve the prediction accuracy and prediction efficiency of mid-long term load forecasting.(准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权
AbstractList Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems. In this paper, a prediction model that incorporates variable selection and sparse Transformer is proposed. Static and temporal variables are used as inputs to give full play to the information enhancement of static variables in the global time range. The variable weighting component is designed based on the gating mechanism with which different weights are assigned to the variables according to their relevance to the predicted output. A two-layer coding structure is designed for temporal feature extraction, attention is sparse, and future moment loads are predicted by multivariate inputs. The proposed model is validated using real power load data, and the experimental results show that it can improve the prediction accuracy and prediction efficiency of mid-long term load forecasting.(准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权
Author 黄文琦(HUANG Wenqi)
孙凌云(SUN Lingyun)
梁凌宇(LIANG Lingyu)
宗珂(ZONG Ke)
赵翔宇(ZHAO Xiangyu)
王鑫(WANG Xin)
Author_xml – sequence: 1
  orcidid: 0009-0004-9422-4589
  fullname: 黄文琦(HUANG Wenqi)
  organization: 1China Southern Power Grid Digital Grid Research Institute Co., Ltd.,Guangzhou 510663, China(1南方电网数字电网研究院有限公司,广东 广州 510663)
– sequence: 2
  fullname: 梁凌宇(LIANG Lingyu)
  organization: 1China Southern Power Grid Digital Grid Research Institute Co., Ltd.,Guangzhou 510663, China(1南方电网数字电网研究院有限公司,广东 广州 510663)
– sequence: 3
  orcidid: 0000-0002-4134-0613
  fullname: 王鑫(WANG Xin)
  organization: 2Zhejiang University-China Southern Power Grid Joint Research Centre on AI, Hangzhou 310058, China(2浙江大学 南方电网人工智能创新联合研究中心,浙江 杭州 310058)
– sequence: 4
  fullname: 赵翔宇(ZHAO Xiangyu)
  organization: 1China Southern Power Grid Digital Grid Research Institute Co., Ltd.,Guangzhou 510663, China(1南方电网数字电网研究院有限公司,广东 广州 510663)
– sequence: 5
  fullname: 宗珂(ZONG Ke)
  organization: 2Zhejiang University-China Southern Power Grid Joint Research Centre on AI, Hangzhou 310058, China(2浙江大学 南方电网人工智能创新联合研究中心,浙江 杭州 310058)
– sequence: 6
  fullname: 孙凌云(SUN Lingyun)
  organization: 2Zhejiang University-China Southern Power Grid Joint Research Centre on AI, Hangzhou 310058, China(2浙江大学 南方电网人工智能创新联合研究中心,浙江 杭州 310058)
BookMark eNqtjL9Kw0AAxm-oYNW-ww0OOjRe0qRNZlF0cOseLneXciXJlbuguDkURIvtYkVUDDrp4KTF2sWXSdLmLQwi-gLCDz74_q2ASiQiBsC6jrRGy7a2uhpXKtJ0hOy6YzotzUCGqaESXa-A6q-_DGpKcQ8hHVm64dhVkBxwWg9E1IExkyHsiSMmYSAwhb6QjGAV8zLzsGIUHmLJsRcwqFjASMxFBHFEYSxxpMp2WC5DQVmwkSWzdDbMRtfF6ag4OcsHz-l02P6r5U8P2f1gftNPpy_F-DO_S-aXk-z8dvGWLC7ei8d-PhnkVx_563hzDSz5OFCs9qOrYH93p729V6cCd92e5CGWx67A3P02hOy4WMacBMzFyKDERKjEMknT9xyr6WDD93zbIy1CG__59QXRp5eP
ContentType Journal Article
DBID DOA
DOI 10.3785/j.issn.1008-9497.2024.04.011
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 491
ExternalDocumentID oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
ID FETCH-doaj_primary_oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd3
IEDL.DBID DOA
ISSN 1008-9497
IngestDate Tue Oct 22 14:42:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd3
ORCID 0000-0002-4134-0613
0009-0004-9422-4589
OpenAccessLink https://doaj.org/article/a02dc40040054c6fb9569a2fbf8bc7cd
ParticipantIDs doaj_primary_oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Zhejiang da xue xue bao. Journal of Zhejiang University. Sciences edition. Li xue ban
PublicationYear 2024
Publisher Zhejiang University Press
Publisher_xml – name: Zhejiang University Press
SSID ssib001051298
ssib051373732
ssib002258177
ssib004369313
ssib008679801
ssib002476865
ssib023167501
ssib000948450
ssib002040240
ssib001104615
ssib000969734
ssib008143637
ssib006704891
ssj0002507526
Score 4.810735
Snippet Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems. In this paper, a prediction model that...
SourceID doaj
SourceType Open Website
StartPage 483
SubjectTerms electricity time-series data(电力时序数据)
mid-long term load forecasting(中长期负荷预测)
multiple variable(多变量)
transformer(transformer)
variable selection(变量选择)
Title Mid-long term power load forecasting based variable selection and transformer model(基于变量选择与Transformer模型的中长期电力负荷预测方法)
URI https://doaj.org/article/a02dc40040054c6fb9569a2fbf8bc7cd
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29LwRBFJ-gEI0QxHemUFAst58zW_oMBQ2F7rK7s-sjcndxKFQKiXBBgwjiQkWhQnw0_pm75f4L781yplOQrXZndyc783Z-vzdv5vcI6QOE5XpkMXByHKEBpfY1VwS-FumeGQrdMyI5oT85y2bm-dg4yuRUU33hmrBEHjhpuCEvZYjAkrZmW4ET-UDoXXiFH3E_YIGQo2-KK85UQhwsbqnxOtdxmSqElkKgU-JFGOpUgNGA-gxL3SFqc52pjg3QdDU-aDquqQCjw-DPUFRoONASRyECKHPHU9VyA_ej2z_ntm4yOIzqbBEQFWbL3HEoxqO5lsvqSR-63IzbQ8tywBisFoHba1hSwRUTIym5CCRoTjSRxi-2S4eTVm4mNZuLLaQ4vSS0lWxmgSIs0BzmaaMrWU9QINBh4OVxJTZFeBV0A1x53NxF8zJfDxgR9TKCrn3TbXhS5vLpLxdfS68H5cPTys5hZWs3LtyWng_mfm6Lb67Kl4X3s-3S813l-C2-KL4fPZb3zj8eih_7T5Xr7fixEJ-8xPfHA61kamJ8bnRSwy9K5xI5jjQKZMsLYDbpL7NJ_2Y2Zhupy2QzYTuhJvMi6H_dd5HOOKFnmiGMVL7AqHQU2R1k5O_1df7HS7pIA_Zsslq4m9Stra6HPaQ2L9Z7pfl_Ar05D9c
link.rule.ids 315,782,786,866,2108,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mid-long+term+power+load+forecasting+based+variable+selection+and+transformer+model%28%E5%9F%BA%E4%BA%8E%E5%8F%98%E9%87%8F%E9%80%89%E6%8B%A9%E4%B8%8ETransformer%E6%A8%A1%E5%9E%8B%E7%9A%84%E4%B8%AD%E9%95%BF%E6%9C%9F%E7%94%B5%E5%8A%9B%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95%29&rft.jtitle=Zhejiang+da+xue+xue+bao.+Journal+of+Zhejiang+University.+Sciences+edition.+Li+xue+ban&rft.au=%E9%BB%84%E6%96%87%E7%90%A6%28HUANG+Wenqi%29&rft.au=%E6%A2%81%E5%87%8C%E5%AE%87%28LIANG+Lingyu%29&rft.au=%E7%8E%8B%E9%91%AB%28WANG+Xin%29&rft.au=%E8%B5%B5%E7%BF%94%E5%AE%87%28ZHAO+Xiangyu%29&rft.date=2024-07-01&rft.pub=Zhejiang+University+Press&rft.issn=1008-9497&rft.volume=51&rft.issue=4&rft.spage=483&rft.epage=491&rft_id=info:doi/10.3785%2Fj.issn.1008-9497.2024.04.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1008-9497&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1008-9497&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1008-9497&client=summon