Mid-long term power load forecasting based variable selection and transformer model(基于变量选择与Transformer模型的中长期电力负荷预测方法)
Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems. In this paper, a prediction model that incorporates variable selection and sparse Transformer is proposed. Static and temporal variables are used as inputs to give full play to the inf...
Saved in:
Published in: | Zhejiang da xue xue bao. Journal of Zhejiang University. Sciences edition. Li xue ban Vol. 51; no. 4; pp. 483 - 491 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | Chinese |
Published: |
Zhejiang University Press
01-07-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems. In this paper, a prediction model that incorporates variable selection and sparse Transformer is proposed. Static and temporal variables are used as inputs to give full play to the information enhancement of static variables in the global time range. The variable weighting component is designed based on the gating mechanism with which different weights are assigned to the variables according to their relevance to the predicted output. A two-layer coding structure is designed for temporal feature extraction, attention is sparse, and future moment loads are predicted by multivariate inputs. The proposed model is validated using real power load data, and the experimental results show that it can improve the prediction accuracy and prediction efficiency of mid-long term load forecasting.(准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权 |
---|---|
AbstractList | Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems. In this paper, a prediction model that incorporates variable selection and sparse Transformer is proposed. Static and temporal variables are used as inputs to give full play to the information enhancement of static variables in the global time range. The variable weighting component is designed based on the gating mechanism with which different weights are assigned to the variables according to their relevance to the predicted output. A two-layer coding structure is designed for temporal feature extraction, attention is sparse, and future moment loads are predicted by multivariate inputs. The proposed model is validated using real power load data, and the experimental results show that it can improve the prediction accuracy and prediction efficiency of mid-long term load forecasting.(准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权 |
Author | 黄文琦(HUANG Wenqi) 孙凌云(SUN Lingyun) 梁凌宇(LIANG Lingyu) 宗珂(ZONG Ke) 赵翔宇(ZHAO Xiangyu) 王鑫(WANG Xin) |
Author_xml | – sequence: 1 orcidid: 0009-0004-9422-4589 fullname: 黄文琦(HUANG Wenqi) organization: 1China Southern Power Grid Digital Grid Research Institute Co., Ltd.,Guangzhou 510663, China(1南方电网数字电网研究院有限公司,广东 广州 510663) – sequence: 2 fullname: 梁凌宇(LIANG Lingyu) organization: 1China Southern Power Grid Digital Grid Research Institute Co., Ltd.,Guangzhou 510663, China(1南方电网数字电网研究院有限公司,广东 广州 510663) – sequence: 3 orcidid: 0000-0002-4134-0613 fullname: 王鑫(WANG Xin) organization: 2Zhejiang University-China Southern Power Grid Joint Research Centre on AI, Hangzhou 310058, China(2浙江大学 南方电网人工智能创新联合研究中心,浙江 杭州 310058) – sequence: 4 fullname: 赵翔宇(ZHAO Xiangyu) organization: 1China Southern Power Grid Digital Grid Research Institute Co., Ltd.,Guangzhou 510663, China(1南方电网数字电网研究院有限公司,广东 广州 510663) – sequence: 5 fullname: 宗珂(ZONG Ke) organization: 2Zhejiang University-China Southern Power Grid Joint Research Centre on AI, Hangzhou 310058, China(2浙江大学 南方电网人工智能创新联合研究中心,浙江 杭州 310058) – sequence: 6 fullname: 孙凌云(SUN Lingyun) organization: 2Zhejiang University-China Southern Power Grid Joint Research Centre on AI, Hangzhou 310058, China(2浙江大学 南方电网人工智能创新联合研究中心,浙江 杭州 310058) |
BookMark | eNqtjL9Kw0AAxm-oYNW-ww0OOjRe0qRNZlF0cOseLneXciXJlbuguDkURIvtYkVUDDrp4KTF2sWXSdLmLQwi-gLCDz74_q2ASiQiBsC6jrRGy7a2uhpXKtJ0hOy6YzotzUCGqaESXa-A6q-_DGpKcQ8hHVm64dhVkBxwWg9E1IExkyHsiSMmYSAwhb6QjGAV8zLzsGIUHmLJsRcwqFjASMxFBHFEYSxxpMp2WC5DQVmwkSWzdDbMRtfF6ag4OcsHz-l02P6r5U8P2f1gftNPpy_F-DO_S-aXk-z8dvGWLC7ei8d-PhnkVx_563hzDSz5OFCs9qOrYH93p729V6cCd92e5CGWx67A3P02hOy4WMacBMzFyKDERKjEMknT9xyr6WDD93zbIy1CG__59QXRp5eP |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.3785/j.issn.1008-9497.2024.04.011 |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 491 |
ExternalDocumentID | oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ |
ID | FETCH-doaj_primary_oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd3 |
IEDL.DBID | DOA |
ISSN | 1008-9497 |
IngestDate | Tue Oct 22 14:42:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | Chinese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-doaj_primary_oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd3 |
ORCID | 0000-0002-4134-0613 0009-0004-9422-4589 |
OpenAccessLink | https://doaj.org/article/a02dc40040054c6fb9569a2fbf8bc7cd |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Zhejiang da xue xue bao. Journal of Zhejiang University. Sciences edition. Li xue ban |
PublicationYear | 2024 |
Publisher | Zhejiang University Press |
Publisher_xml | – name: Zhejiang University Press |
SSID | ssib001051298 ssib051373732 ssib002258177 ssib004369313 ssib008679801 ssib002476865 ssib023167501 ssib000948450 ssib002040240 ssib001104615 ssib000969734 ssib008143637 ssib006704891 ssj0002507526 |
Score | 4.810735 |
Snippet | Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems. In this paper, a prediction model that... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 483 |
SubjectTerms | electricity time-series data(电力时序数据) mid-long term load forecasting(中长期负荷预测) multiple variable(多变量) transformer(transformer) variable selection(变量选择) |
Title | Mid-long term power load forecasting based variable selection and transformer model(基于变量选择与Transformer模型的中长期电力负荷预测方法) |
URI | https://doaj.org/article/a02dc40040054c6fb9569a2fbf8bc7cd |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29LwRBFJ-gEI0QxHemUFAst58zW_oMBQ2F7rK7s-sjcndxKFQKiXBBgwjiQkWhQnw0_pm75f4L781yplOQrXZndyc783Z-vzdv5vcI6QOE5XpkMXByHKEBpfY1VwS-FumeGQrdMyI5oT85y2bm-dg4yuRUU33hmrBEHjhpuCEvZYjAkrZmW4ET-UDoXXiFH3E_YIGQo2-KK85UQhwsbqnxOtdxmSqElkKgU-JFGOpUgNGA-gxL3SFqc52pjg3QdDU-aDquqQCjw-DPUFRoONASRyECKHPHU9VyA_ej2z_ntm4yOIzqbBEQFWbL3HEoxqO5lsvqSR-63IzbQ8tywBisFoHba1hSwRUTIym5CCRoTjSRxi-2S4eTVm4mNZuLLaQ4vSS0lWxmgSIs0BzmaaMrWU9QINBh4OVxJTZFeBV0A1x53NxF8zJfDxgR9TKCrn3TbXhS5vLpLxdfS68H5cPTys5hZWs3LtyWng_mfm6Lb67Kl4X3s-3S813l-C2-KL4fPZb3zj8eih_7T5Xr7fixEJ-8xPfHA61kamJ8bnRSwy9K5xI5jjQKZMsLYDbpL7NJ_2Y2Zhupy2QzYTuhJvMi6H_dd5HOOKFnmiGMVL7AqHQU2R1k5O_1df7HS7pIA_Zsslq4m9Stra6HPaQ2L9Z7pfl_Ar05D9c |
link.rule.ids | 315,782,786,866,2108,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mid-long+term+power+load+forecasting+based+variable+selection+and+transformer+model%28%E5%9F%BA%E4%BA%8E%E5%8F%98%E9%87%8F%E9%80%89%E6%8B%A9%E4%B8%8ETransformer%E6%A8%A1%E5%9E%8B%E7%9A%84%E4%B8%AD%E9%95%BF%E6%9C%9F%E7%94%B5%E5%8A%9B%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95%29&rft.jtitle=Zhejiang+da+xue+xue+bao.+Journal+of+Zhejiang+University.+Sciences+edition.+Li+xue+ban&rft.au=%E9%BB%84%E6%96%87%E7%90%A6%28HUANG+Wenqi%29&rft.au=%E6%A2%81%E5%87%8C%E5%AE%87%28LIANG+Lingyu%29&rft.au=%E7%8E%8B%E9%91%AB%28WANG+Xin%29&rft.au=%E8%B5%B5%E7%BF%94%E5%AE%87%28ZHAO+Xiangyu%29&rft.date=2024-07-01&rft.pub=Zhejiang+University+Press&rft.issn=1008-9497&rft.volume=51&rft.issue=4&rft.spage=483&rft.epage=491&rft_id=info:doi/10.3785%2Fj.issn.1008-9497.2024.04.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a02dc40040054c6fb9569a2fbf8bc7cd |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1008-9497&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1008-9497&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1008-9497&client=summon |