Semilinear cooperative elliptic systems on Rn

We study here the following semilinear cooperative elliptic system defined on IRn , n > 2 : (1 – a) −∆u = aρ(x)u + bρ(x)v + f(x, u, v) x ∈ IRn , (1 – b) −∆v = cρ(x)u + dρ(x)v + g(x, u, v) x ∈ IRn , (1 – c) u −→ 0 , v −→ 0 as |x| −→ +∞. Here a, b, c, d are constants such that b, c > 0 ; ρ, f an...

Full description

Saved in:
Bibliographic Details
Published in:Rendiconti di matematica e delle sue applicazioni (1981) Vol. 15; no. 1; pp. 89 - 108
Main Authors: J. FLECKINGER-PELLÉ, H. SERAG
Format: Journal Article
Language:English
Published: Sapienza Università Editrice 01-01-1995
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study here the following semilinear cooperative elliptic system defined on IRn , n > 2 : (1 – a) −∆u = aρ(x)u + bρ(x)v + f(x, u, v) x ∈ IRn , (1 – b) −∆v = cρ(x)u + dρ(x)v + g(x, u, v) x ∈ IRn , (1 – c) u −→ 0 , v −→ 0 as |x| −→ +∞. Here a, b, c, d are constants such that b, c > 0 ; ρ, f and g are given functions; ρ is nonnegative and tends to 0 at ∞. We first establish necessary and sufficient conditions on the coefficients for having a Maximum Principle for the linear System. Then we show that these conditions ensure existence of solutions for the linear System and for the semilinear System when f and g satisfy some ”sublinear” condition. Under some additional assumption we also derive uniqueness of the solutions. Finally we show that our results can be extended to N × N systems, N > 2.
AbstractList We study here the following semilinear cooperative elliptic system defined on IRn , n > 2 : (1 – a) −∆u = aρ(x)u + bρ(x)v + f(x, u, v) x ∈ IRn , (1 – b) −∆v = cρ(x)u + dρ(x)v + g(x, u, v) x ∈ IRn , (1 – c) u −→ 0 , v −→ 0 as |x| −→ +∞. Here a, b, c, d are constants such that b, c > 0 ; ρ, f and g are given functions; ρ is nonnegative and tends to 0 at ∞. We first establish necessary and sufficient conditions on the coefficients for having a Maximum Principle for the linear System. Then we show that these conditions ensure existence of solutions for the linear System and for the semilinear System when f and g satisfy some ”sublinear” condition. Under some additional assumption we also derive uniqueness of the solutions. Finally we show that our results can be extended to N × N systems, N > 2.
Author J. FLECKINGER-PELLÉ
H. SERAG
Author_xml – sequence: 1
  fullname: J. FLECKINGER-PELLÉ
  organization: GREMAQ – Univ. Toulouse 1 – pl. A. France – 31042 Toulouse Cedex
– sequence: 2
  fullname: H. SERAG
  organization: UMR MIP. UFR MIG – Univ.Toulouse 3 – 118 Rte de Narbonne – 31062
BookMark eNqtjEsKwjAUAINUsH7ukAsU2nz6WYuiW3UfnumrpKRJSYrQ21vEI7gYBmYxW5I473BFUiY5yziXeULSomB5VhU135BtjH2el_VCSrI7DsYahxCo9n7EAJN5I0VrzTgZTeMcJxwi9Y7e3J6sO7ARDz_vyPV8ehwvWeuhV2MwA4RZeTDqG3x4KQjLxaKSUjbPmglAUYlOtk3Zge5K0TaVYI1m_J-vD1zlTz0
ContentType Journal Article
DBID DOA
DatabaseName Directory of Open Access Journals (Open Access)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2532-3350
EndPage 108
ExternalDocumentID oai_doaj_org_article_5559b824ae474f5d96facf64d97429c2
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
FRJ
FRP
GROUPED_DOAJ
OK1
SJN
ID FETCH-doaj_primary_oai_doaj_org_article_5559b824ae474f5d96facf64d97429c23
IEDL.DBID DOA
ISSN 1120-7183
IngestDate Tue Oct 22 15:01:10 EDT 2024
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_5559b824ae474f5d96facf64d97429c23
OpenAccessLink https://doaj.org/article/5559b824ae474f5d96facf64d97429c2
ParticipantIDs doaj_primary_oai_doaj_org_article_5559b824ae474f5d96facf64d97429c2
PublicationCentury 1900
PublicationDate 1995-01-01
PublicationDateYYYYMMDD 1995-01-01
PublicationDate_xml – month: 01
  year: 1995
  text: 1995-01-01
  day: 01
PublicationDecade 1990
PublicationTitle Rendiconti di matematica e delle sue applicazioni (1981)
PublicationYear 1995
Publisher Sapienza Università Editrice
Publisher_xml – name: Sapienza Università Editrice
SSID ssj0068006
Score 2.7516208
Snippet We study here the following semilinear cooperative elliptic system defined on IRn , n > 2 : (1 – a) −∆u = aρ(x)u + bρ(x)v + f(x, u, v) x ∈ IRn , (1 – b) −∆v =...
SourceID doaj
SourceType Open Website
StartPage 89
SubjectTerms cooperative elliptic systems
unbounded domains
weighted sobolev spaces
Title Semilinear cooperative elliptic systems on Rn
URI https://doaj.org/article/5559b824ae474f5d96facf64d97429c2
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07TwMxDMct6AQD4ineysAacc3lkstIS6sywEAZ2E65PCQGclWPfv86SanExABrhlhOFPtvK_kF4G7oFfOYqSjz2lHU_5xqXhcU1au0MUWJ1O-YzeXLe_04iZic7Vdf8U5YxgPnhbuvUPK2NePaccl9ZZXw2njBLQphpkyOvoX8LqZyDBYog9K7oiEWRxh9yx9E_pQ6podwsNF85CHbOoIdF45h_3kLTO1PgM7d50dUfHpJTNctXAZyk4jLxENtSCYu96QL5DWcwtN08jae0WitWWRgRBMRzmkAHWs2jjW_OVaewSB0wZ0DsZXkTjlvW1lyo1VbttIXlgnLFJ4vcwGjv9u7_I9JrmAvv_mOPYprGHwtV-4Gdnu7uk0btAb-I5sw
link.rule.ids 315,782,786,2107
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semilinear+cooperative+elliptic+systems+on+Rn&rft.jtitle=Rendiconti+di+matematica+e+delle+sue+applicazioni+%281981%29&rft.au=J.+FLECKINGER-PELL%C3%89&rft.au=H.+SERAG&rft.date=1995-01-01&rft.pub=Sapienza+Universit%C3%A0+Editrice&rft.issn=1120-7183&rft.eissn=2532-3350&rft.volume=15&rft.issue=1&rft.spage=89&rft.epage=108&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5559b824ae474f5d96facf64d97429c2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-7183&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-7183&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-7183&client=summon