Semilinear cooperative elliptic systems on Rn
We study here the following semilinear cooperative elliptic system defined on IRn , n > 2 : (1 – a) −∆u = aρ(x)u + bρ(x)v + f(x, u, v) x ∈ IRn , (1 – b) −∆v = cρ(x)u + dρ(x)v + g(x, u, v) x ∈ IRn , (1 – c) u −→ 0 , v −→ 0 as |x| −→ +∞. Here a, b, c, d are constants such that b, c > 0 ; ρ, f an...
Saved in:
Published in: | Rendiconti di matematica e delle sue applicazioni (1981) Vol. 15; no. 1; pp. 89 - 108 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Sapienza Università Editrice
01-01-1995
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We study here the following semilinear cooperative elliptic system defined on IRn , n > 2 : (1 – a) −∆u = aρ(x)u + bρ(x)v + f(x, u, v) x ∈ IRn , (1 – b) −∆v = cρ(x)u + dρ(x)v + g(x, u, v) x ∈ IRn , (1 – c) u −→ 0 , v −→ 0 as |x| −→ +∞. Here a, b, c, d are constants such that b, c > 0 ; ρ, f and g are given functions; ρ is nonnegative and tends to 0 at ∞. We first establish necessary and sufficient conditions on the coefficients for having a Maximum Principle for the linear System. Then we show that these conditions ensure existence of solutions for the linear System and for the semilinear System when f and g satisfy some ”sublinear” condition. Under some additional assumption we also derive uniqueness of the solutions. Finally we show that our results can be extended to N × N systems, N > 2. |
---|---|
AbstractList | We study here the following semilinear cooperative elliptic system defined on IRn , n > 2 : (1 – a) −∆u = aρ(x)u + bρ(x)v + f(x, u, v) x ∈ IRn , (1 – b) −∆v = cρ(x)u + dρ(x)v + g(x, u, v) x ∈ IRn , (1 – c) u −→ 0 , v −→ 0 as |x| −→ +∞. Here a, b, c, d are constants such that b, c > 0 ; ρ, f and g are given functions; ρ is nonnegative and tends to 0 at ∞. We first establish necessary and sufficient conditions on the coefficients for having a Maximum Principle for the linear System. Then we show that these conditions ensure existence of solutions for the linear System and for the semilinear System when f and g satisfy some ”sublinear” condition. Under some additional assumption we also derive uniqueness of the solutions. Finally we show that our results can be extended to N × N systems, N > 2. |
Author | J. FLECKINGER-PELLÉ H. SERAG |
Author_xml | – sequence: 1 fullname: J. FLECKINGER-PELLÉ organization: GREMAQ – Univ. Toulouse 1 – pl. A. France – 31042 Toulouse Cedex – sequence: 2 fullname: H. SERAG organization: UMR MIP. UFR MIG – Univ.Toulouse 3 – 118 Rte de Narbonne – 31062 |
BookMark | eNqtjEsKwjAUAINUsH7ukAsU2nz6WYuiW3UfnumrpKRJSYrQ21vEI7gYBmYxW5I473BFUiY5yziXeULSomB5VhU135BtjH2el_VCSrI7DsYahxCo9n7EAJN5I0VrzTgZTeMcJxwi9Y7e3J6sO7ARDz_vyPV8ehwvWeuhV2MwA4RZeTDqG3x4KQjLxaKSUjbPmglAUYlOtk3Zge5K0TaVYI1m_J-vD1zlTz0 |
ContentType | Journal Article |
DBID | DOA |
DatabaseName | Directory of Open Access Journals (Open Access) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2532-3350 |
EndPage | 108 |
ExternalDocumentID | oai_doaj_org_article_5559b824ae474f5d96facf64d97429c2 |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS EBS EJD FRJ FRP GROUPED_DOAJ OK1 SJN |
ID | FETCH-doaj_primary_oai_doaj_org_article_5559b824ae474f5d96facf64d97429c23 |
IEDL.DBID | DOA |
ISSN | 1120-7183 |
IngestDate | Tue Oct 22 15:01:10 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-doaj_primary_oai_doaj_org_article_5559b824ae474f5d96facf64d97429c23 |
OpenAccessLink | https://doaj.org/article/5559b824ae474f5d96facf64d97429c2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5559b824ae474f5d96facf64d97429c2 |
PublicationCentury | 1900 |
PublicationDate | 1995-01-01 |
PublicationDateYYYYMMDD | 1995-01-01 |
PublicationDate_xml | – month: 01 year: 1995 text: 1995-01-01 day: 01 |
PublicationDecade | 1990 |
PublicationTitle | Rendiconti di matematica e delle sue applicazioni (1981) |
PublicationYear | 1995 |
Publisher | Sapienza Università Editrice |
Publisher_xml | – name: Sapienza Università Editrice |
SSID | ssj0068006 |
Score | 2.7516208 |
Snippet | We study here the following semilinear cooperative elliptic system defined on IRn , n > 2 : (1 – a) −∆u = aρ(x)u + bρ(x)v + f(x, u, v) x ∈ IRn , (1 – b) −∆v =... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 89 |
SubjectTerms | cooperative elliptic systems unbounded domains weighted sobolev spaces |
Title | Semilinear cooperative elliptic systems on Rn |
URI | https://doaj.org/article/5559b824ae474f5d96facf64d97429c2 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07TwMxDMct6AQD4ineysAacc3lkstIS6sywEAZ2E65PCQGclWPfv86SanExABrhlhOFPtvK_kF4G7oFfOYqSjz2lHU_5xqXhcU1au0MUWJ1O-YzeXLe_04iZic7Vdf8U5YxgPnhbuvUPK2NePaccl9ZZXw2njBLQphpkyOvoX8LqZyDBYog9K7oiEWRxh9yx9E_pQ6podwsNF85CHbOoIdF45h_3kLTO1PgM7d50dUfHpJTNctXAZyk4jLxENtSCYu96QL5DWcwtN08jae0WitWWRgRBMRzmkAHWs2jjW_OVaewSB0wZ0DsZXkTjlvW1lyo1VbttIXlgnLFJ4vcwGjv9u7_I9JrmAvv_mOPYprGHwtV-4Gdnu7uk0btAb-I5sw |
link.rule.ids | 315,782,786,2107 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semilinear+cooperative+elliptic+systems+on+Rn&rft.jtitle=Rendiconti+di+matematica+e+delle+sue+applicazioni+%281981%29&rft.au=J.+FLECKINGER-PELL%C3%89&rft.au=H.+SERAG&rft.date=1995-01-01&rft.pub=Sapienza+Universit%C3%A0+Editrice&rft.issn=1120-7183&rft.eissn=2532-3350&rft.volume=15&rft.issue=1&rft.spage=89&rft.epage=108&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5559b824ae474f5d96facf64d97429c2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-7183&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-7183&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-7183&client=summon |