Prediction of Temperature Distribution within a Piece of Date Palm Trunk during the Microwave Heating Treatment to Control Rhynchophorus Ferrugineus

Introduction In recent decays, the microwave heating treatment is one of the best ways for the pest control. It is difficult to determine temperature in different parts of materials by Thermometer, but we can solve this problem by Comsol Multiphysics Software. In a research, results of a farm test w...

Full description

Saved in:
Bibliographic Details
Published in:Māshīnʹhā-yi kishāvarzī Vol. 8; no. 2; pp. 333 - 345
Main Authors: S Mollazehi, H Sadrnia, M. R Bayati
Format: Journal Article
Language:English
Published: Ferdowsi University of Mashhad 01-09-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Introduction In recent decays, the microwave heating treatment is one of the best ways for the pest control. It is difficult to determine temperature in different parts of materials by Thermometer, but we can solve this problem by Comsol Multiphysics Software. In a research, results of a farm test were consistent with laboratory data and high temperature area was belonged to the outer part of wooden piece (Massa et al., 2015). The numerical simulation of Microwave heating was successfully done for fruits and compared with experimental measurement in two cylindrically and spherically states by Zhao et al (2011). The results indicated that, the temperature prediction in a wooden piece under heating of a Microwave system was in conformity with experimental infra-red rays data (Rattanadecho, 2006). The outer part of the piece was impressed by inspired heating and the inner part by transmission of heating (Massa et al., 2011). A high frequency structure simulator software, a radiant trumpet shaped antenna with 2.45GHz frequencies, 100 watt electric power were the tools that were used to predict the temperature at a Date Palm Wooden piece at 10, 12, 14 and 16 centimeters (Al Shwear and Remili, 2016). Microwave pretreatment was studied with two factors of Microwave radiation (170, 450, and 850 W) and Microwave duration (2, 6, and 10 min). It can be concluded that the Ozonolysis is the most effective pretreatment regarding to saccharification percentage of sugarcane bagasse (Eqra et al,2015). This study has been done with the aim of fighting with Rhynchophorus ferrugineus blight by microwave and removing toxins in crops. Materials and Methods Samples features such as physical, mechanical and magnetic once were established in both Tehrans Material and Energy lab and Polymer and Petrochemical Research Center, Then it was simulated by Time_ Temperature profile software. For simulating research by Comsol Multiphysics software, at first sample and chamber sizes were determined and the type of material, meshing, 2.45GHz frequencies and the time duration of heating were measured, respectively. Finally the research was analyzed and Time‌_Temperature profile which was one of the outcomes of Multiphysics software was determined. A cubic piece of wood (103×86×78 mm) (Fig. 1), a Digital Thermometer and a Microwave are the tools which the researcher used in this sample. The temperature was measured at three different parts of cub diagonal by Thermometer. At first, the wooden sample was divided in two equal parts and a sensor was placed in the middle of it and then it was placed in the Microwave. The primary temperature of sample and Microwaves was 27°C. We turn the Microwave on for a period of 10 minutes, after that we check the wooden piece temperature by Thermometer at 20 seconds intervals. Results and Discussion T-test was used to compare statistical results achieved by simulated and experimental temperature of cubic diagonal. According to T mark at 5 percent level, we can say that there is a significant difference between simulated and experimental temperature at point1, however, there is no such a significant difference at 2 and 3 points. In the following phase, the temperature was compared at two simulated and experimental states by variance analysis test. There was significant difference at 1, 2 and 3 points according to data are shown at figure 4. Moreover, Duncan Post hoc test is shown at figures 5 and 7 that experimental temperature shows no difference at 1 and 3 points but it makes difference at 1, 2 and 2, 3 points. Conclusions Results show that the simulation model can predict the temperature in different parts of a wooden sample. The temperature will be higher as much as the points will be closer to the wave producer resource. In order to control pests in the trunk of a tree, we should use several wave generator systems, instead of ones. It is recommended that cylindrical microwave should be simulated and designed instead cubic ones, because it is better adjusted with tree stock and the wave generator system is placed on this surface so that the temperature will be distributed symmetrically along the diagonal.
AbstractList Introduction In recent decays, the microwave heating treatment is one of the best ways for the pest control. It is difficult to determine temperature in different parts of materials by Thermometer, but we can solve this problem by Comsol Multiphysics Software. In a research, results of a farm test were consistent with laboratory data and high temperature area was belonged to the outer part of wooden piece (Massa et al., 2015). The numerical simulation of Microwave heating was successfully done for fruits and compared with experimental measurement in two cylindrically and spherically states by Zhao et al (2011). The results indicated that, the temperature prediction in a wooden piece under heating of a Microwave system was in conformity with experimental infra-red rays data (Rattanadecho, 2006). The outer part of the piece was impressed by inspired heating and the inner part by transmission of heating (Massa et al., 2011). A high frequency structure simulator software, a radiant trumpet shaped antenna with 2.45GHz frequencies, 100 watt electric power were the tools that were used to predict the temperature at a Date Palm Wooden piece at 10, 12, 14 and 16 centimeters (Al Shwear and Remili, 2016). Microwave pretreatment was studied with two factors of Microwave radiation (170, 450, and 850 W) and Microwave duration (2, 6, and 10 min). It can be concluded that the Ozonolysis is the most effective pretreatment regarding to saccharification percentage of sugarcane bagasse (Eqra et al,2015). This study has been done with the aim of fighting with Rhynchophorus ferrugineus blight by microwave and removing toxins in crops. Materials and Methods Samples features such as physical, mechanical and magnetic once were established in both Tehrans Material and Energy lab and Polymer and Petrochemical Research Center, Then it was simulated by Time_ Temperature profile software. For simulating research by Comsol Multiphysics software, at first sample and chamber sizes were determined and the type of material, meshing, 2.45GHz frequencies and the time duration of heating were measured, respectively. Finally the research was analyzed and Time‌_Temperature profile which was one of the outcomes of Multiphysics software was determined. A cubic piece of wood (103×86×78 mm) (Fig. 1), a Digital Thermometer and a Microwave are the tools which the researcher used in this sample. The temperature was measured at three different parts of cub diagonal by Thermometer. At first, the wooden sample was divided in two equal parts and a sensor was placed in the middle of it and then it was placed in the Microwave. The primary temperature of sample and Microwaves was 27°C. We turn the Microwave on for a period of 10 minutes, after that we check the wooden piece temperature by Thermometer at 20 seconds intervals. Results and Discussion T-test was used to compare statistical results achieved by simulated and experimental temperature of cubic diagonal. According to T mark at 5 percent level, we can say that there is a significant difference between simulated and experimental temperature at point1, however, there is no such a significant difference at 2 and 3 points. In the following phase, the temperature was compared at two simulated and experimental states by variance analysis test. There was significant difference at 1, 2 and 3 points according to data are shown at figure 4. Moreover, Duncan Post hoc test is shown at figures 5 and 7 that experimental temperature shows no difference at 1 and 3 points but it makes difference at 1, 2 and 2, 3 points. Conclusions Results show that the simulation model can predict the temperature in different parts of a wooden sample. The temperature will be higher as much as the points will be closer to the wave producer resource. In order to control pests in the trunk of a tree, we should use several wave generator systems, instead of ones. It is recommended that cylindrical microwave should be simulated and designed instead cubic ones, because it is better adjusted with tree stock and the wave generator system is placed on this surface so that the temperature will be distributed symmetrically along the diagonal.
Author H Sadrnia
S Mollazehi
M. R Bayati
Author_xml – sequence: 1
  fullname: S Mollazehi
  organization: Department of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
– sequence: 2
  fullname: H Sadrnia
  organization: Department of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
– sequence: 3
  fullname: M. R Bayati
  organization: Department of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
BookMark eNqtj8FuwjAQRK2KSqUt5173B6CJE4xzhiJ6QEJV7pGTbMjSxEYbG8R_9IMLqJ_Q0zzNjEaaZzGyzqIQb3E0kzJSi_eD6WcnTXKm5FymD2IsU5lMkyxNRleWUk-VltmTmAwDldE8lmquMzUWPzvGmipPzoJrIMf-iGx8YIQVDZ6pDPfsTL4lCwZ2hBXeqivjEXam6yHnYL-hDkx2D75F2FLF7mxOCBs0_ubmfIUerQfvYOmsZ9fBV3uxVeuOreMwwBqZw54shuFVPDamG3Dypy_ic_2RLzfT2plDcWTqDV8KZ6i4G473hWFPVYdFmmUxYtQ0C12nCsvrV13LKM5SXStTquQ_t34BYCB8kw
ContentType Journal Article
DBID DOA
DOI 10.22067/jam.v8i2.62524
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2423-3943
EndPage 345
ExternalDocumentID oai_doaj_org_article_4991ee0ff78d46ebb058d201948d6ab6
GroupedDBID 5VS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
IPNFZ
KQ8
OK1
RIG
ID FETCH-doaj_primary_oai_doaj_org_article_4991ee0ff78d46ebb058d201948d6ab63
IEDL.DBID DOA
ISSN 2228-6829
IngestDate Tue Oct 22 14:41:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_4991ee0ff78d46ebb058d201948d6ab63
OpenAccessLink https://doaj.org/article/4991ee0ff78d46ebb058d201948d6ab6
ParticipantIDs doaj_primary_oai_doaj_org_article_4991ee0ff78d46ebb058d201948d6ab6
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Māshīnʹhā-yi kishāvarzī
PublicationYear 2018
Publisher Ferdowsi University of Mashhad
Publisher_xml – name: Ferdowsi University of Mashhad
SSID ssib051265896
ssj0001922464
Score 4.18458
Snippet Introduction In recent decays, the microwave heating treatment is one of the best ways for the pest control. It is difficult to determine temperature in...
SourceID doaj
SourceType Open Website
StartPage 333
SubjectTerms comsol multiphysics software
microwave
simulation
temperature profile prediction
Title Prediction of Temperature Distribution within a Piece of Date Palm Trunk during the Microwave Heating Treatment to Control Rhynchophorus Ferrugineus
URI https://doaj.org/article/4991ee0ff78d46ebb058d201948d6ab6
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYt6AQD4lNQPnQDa0rrOKkzln6oDKAKMrBFTuzSgpRUblPE_-AHcxcHBBMDjLGi2DlZvtfOm-cYu-SZ7kiZRh7vRoEnOlp7qUwzT0RZoBWPjK7c7uOH7t2jHAwJk_NV6os8YQ4P7AJ3hYq8Y0x7Ou1KLUKTpu1AasxakZA6VKmDbbfDb5spnEmYxTCz1iC5Z6djuKhYUnTi4YWSR47zwwlfTgyi1lrOeQt3A1z8wPdXeWa0y3ZqgQg9N7A9tmHyfbbde7I1JMMcsPeJpc8rFFIophAblL4OjQwD4uDWJayAzljnOSiYzE1m6NYBKkugkikQ2zJ_AfeTIqAIhFty5r2qtYExyUhsjT896LAqoO8s7XA_e8txxVzMClsuYWSsLQloWC4P2c1oGPfHHr1UsnAQi4Sw0lUDBjupg538Fmz_iDXyIjfHDIQ2QSaET_gc4ftBpJQf4oqVqsxHTeCfsOu_99f8j4ecsi28ks4YdsYaK1uac7a51OVFNWk-AFW7zDQ
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Temperature+Distribution+within+a+Piece+of+Date+Palm+Trunk+during+the+Microwave+Heating+Treatment+to+Control+Rhynchophorus+Ferrugineus&rft.jtitle=M%C4%81sh%C4%ABn%CA%B9h%C4%81-yi+kish%C4%81varz%C4%AB&rft.au=S+Mollazehi&rft.au=H+Sadrnia&rft.au=M.+R+Bayati&rft.date=2018-09-01&rft.pub=Ferdowsi+University+of+Mashhad&rft.issn=2228-6829&rft.eissn=2423-3943&rft.volume=8&rft.issue=2&rft.spage=333&rft.epage=345&rft_id=info:doi/10.22067%2Fjam.v8i2.62524&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4991ee0ff78d46ebb058d201948d6ab6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2228-6829&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2228-6829&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2228-6829&client=summon