Evaluation of Artificial Neural Network for determining distribution pattern of ascid family (Acari: Mesostigmata) in Damghan

In this study, the artificial neural network methods were used to estimate the distribution of ascid family (Acari: Mesostigmata). For this aim, latitude, longitude and elevation from the sea level of 137 points were defined as inputs and output of method was number of species of this family on thos...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Entomological Society of Iran : J.E.S.I Vol. 37; no. 3; pp. 361 - 368
Main Authors: M. Hakimitabar, A. R. Shabaninejad, A. Saboori, M. H. Shams
Format: Journal Article
Language:English
Published: Entomological Society of Iran 01-11-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, the artificial neural network methods were used to estimate the distribution of ascid family (Acari: Mesostigmata). For this aim, latitude, longitude and elevation from the sea level of 137 points were defined as inputs and output of method was number of species of this family on those points and Perceptron with propagation algorithm was evaluated in artificial neural network method. To evaluate the ability of neural networks used to predict dispersion, statistical comparison of parameters such as variance, statistical distribution and mean of spatial predicted values by neural network and their actual values were used. The results showed that there was no significant difference (p> 0.4) in the training and test phases between the values of the statistical characteristics of variance, the statistical distribution and the mean of real and predicted spatial data of this family by the neural network. It can be concluded that the artificial neural network method was able to predict the dispersion of this family with proper precision by integrating three factors of latitude and longitude and elevation from the sea level. ;font-family:"Times New Roman","serif"; mso-bidi-font-family:"B Lotus";mso-bidi-language:FA'>p> 0.4). در مجموع می­توان چنین نتیجه گرفت که روش شبکه عصبی مصنوعی با تلفیق سه عامل طول و عرض جغرافیایی و ارتفاع از سطح دریا، قادر به پیش­بینی پراکندگی این خانواده با دقت مناسب بود.
AbstractList In this study, the artificial neural network methods were used to estimate the distribution of ascid family (Acari: Mesostigmata). For this aim, latitude, longitude and elevation from the sea level of 137 points were defined as inputs and output of method was number of species of this family on those points and Perceptron with propagation algorithm was evaluated in artificial neural network method. To evaluate the ability of neural networks used to predict dispersion, statistical comparison of parameters such as variance, statistical distribution and mean of spatial predicted values by neural network and their actual values were used. The results showed that there was no significant difference (p> 0.4) in the training and test phases between the values of the statistical characteristics of variance, the statistical distribution and the mean of real and predicted spatial data of this family by the neural network. It can be concluded that the artificial neural network method was able to predict the dispersion of this family with proper precision by integrating three factors of latitude and longitude and elevation from the sea level. ;font-family:"Times New Roman","serif"; mso-bidi-font-family:"B Lotus";mso-bidi-language:FA'>p> 0.4). در مجموع می­توان چنین نتیجه گرفت که روش شبکه عصبی مصنوعی با تلفیق سه عامل طول و عرض جغرافیایی و ارتفاع از سطح دریا، قادر به پیش­بینی پراکندگی این خانواده با دقت مناسب بود.
Author M. Hakimitabar
A. R. Shabaninejad
A. Saboori
M. H. Shams
Author_xml – sequence: 1
  fullname: M. Hakimitabar
  organization: Shahrood University of Technology
– sequence: 2
  fullname: A. R. Shabaninejad
  organization: Department of Plant Protection, College of Agriculture, Razi Kermanshah University, Kermanshah, Iran
– sequence: 3
  fullname: A. Saboori
  organization: Department of Plant Protection, College of Agriculture, University of Tehran, Tehran, Iran
– sequence: 4
  fullname: M. H. Shams
  organization: Department of Plant Protection, College of Agriculture, University of Tehran, Tehran, Iran
BookMark eNqtjr1OwzAUhS1UJAr0FZBHGBJs59dsFRTBABN7dOvY4YbErmwH1IF3bxTxCEyfdI7Op3NJVtZZTcgNZ6kQnFf3vQ6YCsarlPOS5cWMXJ6RtajqLMlkWa_ImolCJlLK8oJsQugZY0JynvF8TX533zBMENFZ6gzd-ogGFcJA3_XkF8Qf57-ocZ62Omo_okXb0RZD9LifluUB4twsBggKW2pgxOFIb7cKPD7QNx1ciNiNEOGOoqVPMHafYK_JuYEh6M0fr8jr8-7j8SVpHfTNweMI_tg4wGYJnO8amB-qQTesNbmUtVRQirzYQ21MywxXLFNaF9xk_-k6AToCdXU
ContentType Journal Article
DBID DOA
DOI 10.22117/jesi.2017.116045.1149
DatabaseName DOAJ: Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2783-3968
EndPage 368
ExternalDocumentID oai_doaj_org_article_0df49989ca6245ba8ffd0f1c03cee51f
GroupedDBID 5GY
ALMA_UNASSIGNED_HOLDINGS
FRP
GROUPED_DOAJ
ID FETCH-doaj_primary_oai_doaj_org_article_0df49989ca6245ba8ffd0f1c03cee51f3
IEDL.DBID DOA
ISSN 0259-9996
IngestDate Tue Oct 22 15:05:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_0df49989ca6245ba8ffd0f1c03cee51f3
OpenAccessLink https://doaj.org/article/0df49989ca6245ba8ffd0f1c03cee51f
ParticipantIDs doaj_primary_oai_doaj_org_article_0df49989ca6245ba8ffd0f1c03cee51f
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of Entomological Society of Iran : J.E.S.I
PublicationYear 2017
Publisher Entomological Society of Iran
Publisher_xml – name: Entomological Society of Iran
SSID ssj0002911314
Score 4.118464
Snippet In this study, the artificial neural network methods were used to estimate the distribution of ascid family (Acari: Mesostigmata). For this aim, latitude,...
SourceID doaj
SourceType Open Website
StartPage 361
SubjectTerms distribution patterns
perceptron
predatory mites
propagation algorithm
Title Evaluation of Artificial Neural Network for determining distribution pattern of ascid family (Acari: Mesostigmata) in Damghan
URI https://doaj.org/article/0df49989ca6245ba8ffd0f1c03cee51f
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctqITEgniKtzwwwBDVcVrbYSu0FQywwIBYIj-hSCRVS0e-O3d2VMHEAFOkxHKsc3L3P-v8MyFnVnlRcmkyY5nPej7Xmc6dzAQ3kpWOWXiGSxcP8v5JDUeIyVke9YU1YQkPnAzXZS6AKFel1YL3-karEBwLuWUFuPd-HqL3ZeJbMoU-mMM_XCSwN-j7DFV92h7MIeGR3Tc_n2BZlwSPIUDUIDG3_EHtj-FlvEk2Wl1IB2k8W2TF19tk7bmJq9475HO0pHLTJsRmCf1Aka4RL7Gcm4IGpa4tcYGoRB2Ccdszreg0wjRjDxpCn6NpeYOeDyykzJf0zs8bhG6AitUXdFLToX5_edX1Lrkdjx6vbzIceTVNgIoKkdHxBhiyag1Z_WbIYo906qb2-4RKL4JRMpSCB9xRZWzeM6pUXsOMc1YckKu_v-_wPzo5Ius4jWlz4DHpfMwW_oSszt3iNH4QXyYAwis
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Artificial+Neural+Network+for+determining+distribution+pattern+of+ascid+family+%28Acari%3A+Mesostigmata%29+in+Damghan&rft.jtitle=Journal+of+Entomological+Society+of+Iran+%3A+J.E.S.I&rft.au=M.+Hakimitabar&rft.au=A.+R.+Shabaninejad&rft.au=A.+Saboori&rft.au=M.+H.+Shams&rft.date=2017-11-01&rft.pub=Entomological+Society+of+Iran&rft.issn=0259-9996&rft.eissn=2783-3968&rft.volume=37&rft.issue=3&rft.spage=361&rft.epage=368&rft_id=info:doi/10.22117%2Fjesi.2017.116045.1149&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0df49989ca6245ba8ffd0f1c03cee51f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9996&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9996&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9996&client=summon