Hankel Determinant and Toeplitz Determinant on the Class of Bazileviˇc Functions Related to the Lemniscate Bernoulli

In this papers, we investigate the Hankel determinant and Toeplitz determinant for the class Bazileviˇc Function B1(α, δ) related to the Bernoulli Lemniscate function on the unit disk D = {z : |z| < 1} and obtain the upper bounds of the determinant H2(1), H2(2), T2(1), and investigate H2(1) using...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pure and applied mathematics Vol. 16; no. 2; pp. 1290 - 1301
Main Authors: Ni Made Asih, Sa'adatul Fitri, Ratno Bagus Edy Wibowo, Marjono
Format: Journal Article
Language:English
Published: 30-04-2023
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this papers, we investigate the Hankel determinant and Toeplitz determinant for the class Bazileviˇc Function B1(α, δ) related to the Bernoulli Lemniscate function on the unit disk D = {z : |z| < 1} and obtain the upper bounds of the determinant H2(1), H2(2), T2(1), and investigate H2(1) using coefficients invers function. We used lemma from Charateodory-Toeplitz and Libera about sharp inequalities for functions with positive real part.
ISSN:1307-5543
1307-5543
DOI:10.29020/nybg.ejpam.v16i2.4772