Hankel Determinant and Toeplitz Determinant on the Class of Bazileviˇc Functions Related to the Lemniscate Bernoulli
In this papers, we investigate the Hankel determinant and Toeplitz determinant for the class Bazileviˇc Function B1(α, δ) related to the Bernoulli Lemniscate function on the unit disk D = {z : |z| < 1} and obtain the upper bounds of the determinant H2(1), H2(2), T2(1), and investigate H2(1) using...
Saved in:
Published in: | European journal of pure and applied mathematics Vol. 16; no. 2; pp. 1290 - 1301 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
30-04-2023
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this papers, we investigate the Hankel determinant and Toeplitz determinant for the class Bazileviˇc Function B1(α, δ) related to the Bernoulli Lemniscate function on the unit disk D = {z : |z| < 1} and obtain the upper bounds of the determinant H2(1), H2(2), T2(1), and investigate H2(1) using coefficients invers function. We used lemma from Charateodory-Toeplitz and Libera about sharp inequalities for functions with positive real part. |
---|---|
ISSN: | 1307-5543 1307-5543 |
DOI: | 10.29020/nybg.ejpam.v16i2.4772 |