Absolute and strong summability in degree $p \geqslant 1$ of $r$ times differentiated Fourier series and $r$ times differentiated conjugate Fourier series by matrix methods

We establish conditions of $|\gamma|_p$- and $[\gamma]_p$-summability in degree $p \geqslant 1$ of $r$ times differentiated Fourier series at the point where $\gamma = \| \gamma_{nk} \|$ is the matrix of transformation of series to sequence. Analogous conditions are considered also for $r$ times dif...

Full description

Saved in:
Bibliographic Details
Published in:Researches in mathematics (Online) p. 74
Main Author: Polovina, N.T.
Format: Journal Article
Language:English
Published: 06-10-2021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We establish conditions of $|\gamma|_p$- and $[\gamma]_p$-summability in degree $p \geqslant 1$ of $r$ times differentiated Fourier series at the point where $\gamma = \| \gamma_{nk} \|$ is the matrix of transformation of series to sequence. Analogous conditions are considered also for $r$ times differentiated conjugate Fourier series.
ISSN:2664-4991
2664-5009
DOI:10.15421/247719