Abstract 5101: Acute inhibition of myostatin-family proteins preserves muscle in cancer cachexia
Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Vol. 70; no. 8_Supplement; p. 5101 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
15-04-2010
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches in mice. First, myostatin null mice were challenged with Lewis lung carcinoma or B16F10 melanoma. Although hypermuscular at baseline, myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, Follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc, which inhibits myostatin activity and induces dramatic muscle growth in normal mice. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.
Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 5101. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/1538-7445.AM10-5101 |