Spectral parabolic equation solutions of three-dimensional problems involving horizontal coupling and backscattering
The parabolic equation (PE) method and separation of variables are applied to solve problems in which the ocean-acoustic parameters are independent of one of the horizontal Cartesian coordinates. This class of problems is representative of backscattering from ridgelike seamounts, horizontal coupling...
Saved in:
Published in: | The Journal of the Acoustical Society of America Vol. 91; no. 4_Supplement; p. 2463 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
01-04-1992
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The parabolic equation (PE) method and separation of variables are applied to solve problems in which the ocean-acoustic parameters are independent of one of the horizontal Cartesian coordinates. This class of problems is representative of backscattering from ridgelike seamounts, horizontal coupling out of the radial direction, and other types of reverberation. Since the PE method efficiently handles nearly arbitrary variations in depth and in the other horizontal direction, it is possible and practical to solve complicated three-dimensional problems with this approach. The two-way PE is applied to backscattering problems. Solutions are compared with three-dimensional PE solutions for problems involving horizontal coupling. Problems involving elastic ocean bottoms are also considered. |
---|---|
ISSN: | 0001-4966 |
DOI: | 10.1121/1.403045 |