Stretchable Energy Storage with Eutectic Gallium Indium Alloy

The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the conformability of the skin and textiles. This work focuses on developing an intrinsically stretchable electrode prepared by sedimenting the liqui...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials
Main Authors: Gupta, Adit, Al‐Shamery, Noah, Lv, Jian, Thangavel, Gurunathan, Park, Jinwoo, Mandler, Daniel, Lee, Pooi See
Format: Journal Article
Language:English
Published: 13-11-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the conformability of the skin and textiles. This work focuses on developing an intrinsically stretchable electrode prepared by sedimenting the liquid metal particles in a conductive stretchable matrix. The liquid metal‐based electrode can be stretched to ≈900% strain, and its conductivity increases by extending to 250% and retaining its initial conductivity at 500% strain. Benefitting from these properties, the assembled all‐solid‐state energy storage device provides high stretchability of up to 150% strain and a capacity of 0.42 mAh cm −3 at a high coulombic efficiency of 90%. The charge storage mechanism is investigated by probing the electrode/electrolyte interface, uncovering the intricate gallium‐bis(trifluoromethane)sulfonimide (Ga‐TFSI) complexation during electrochemical cycling through in situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy (XPS) analyses, and density functional theory (DFT) calculations. This work offers a promising avenue for the advancement of stretchable batteries.
AbstractList The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the conformability of the skin and textiles. This work focuses on developing an intrinsically stretchable electrode prepared by sedimenting the liquid metal particles in a conductive stretchable matrix. The liquid metal‐based electrode can be stretched to ≈900% strain, and its conductivity increases by extending to 250% and retaining its initial conductivity at 500% strain. Benefitting from these properties, the assembled all‐solid‐state energy storage device provides high stretchability of up to 150% strain and a capacity of 0.42 mAh cm −3 at a high coulombic efficiency of 90%. The charge storage mechanism is investigated by probing the electrode/electrolyte interface, uncovering the intricate gallium‐bis(trifluoromethane)sulfonimide (Ga‐TFSI) complexation during electrochemical cycling through in situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy (XPS) analyses, and density functional theory (DFT) calculations. This work offers a promising avenue for the advancement of stretchable batteries.
Author Al‐Shamery, Noah
Thangavel, Gurunathan
Park, Jinwoo
Mandler, Daniel
Gupta, Adit
Lee, Pooi See
Lv, Jian
Author_xml – sequence: 1
  givenname: Adit
  surname: Gupta
  fullname: Gupta, Adit
  organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore
– sequence: 2
  givenname: Noah
  surname: Al‐Shamery
  fullname: Al‐Shamery, Noah
  organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore
– sequence: 3
  givenname: Jian
  surname: Lv
  fullname: Lv, Jian
  organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore
– sequence: 4
  givenname: Gurunathan
  surname: Thangavel
  fullname: Thangavel, Gurunathan
  organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore
– sequence: 5
  givenname: Jinwoo
  surname: Park
  fullname: Park, Jinwoo
  organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore, School of Chemical Biological and Battery Engineering Gachon University Seongnam 13120 Republic of Korea
– sequence: 6
  givenname: Daniel
  surname: Mandler
  fullname: Mandler, Daniel
  organization: Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
– sequence: 7
  givenname: Pooi See
  orcidid: 0000-0003-1383-1623
  surname: Lee
  fullname: Lee, Pooi See
  organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore
BookMark eNqVjr0KwjAYRYNUsP6sznmB1i9JqTo4iNSfue4h1q9aSVNJItK314J09y7nLgfOmASmMUjInEHMAPhCoaljDjwBsUxhQEKWsiRKVwkE_Rd8RGbOPeC7ZM1AiJBscm_RF3d10Ugzg_bW0tw3Vt2Qvit_p9nLY-Grgh6U1tWrpidz7bDVummnZFgq7XD244TE--y8O0aFbZyzWMqnrWplW8lAdp2y65R9p_hb-ABYbEbU
Cites_doi 10.1039/D0CS00035C
10.1002/inf2.12544
10.1002/adma.201805536
10.1016/j.softx.2017.11.002
10.1002/admt.202301189
10.1038/s41928-023-00960-w
10.3390/polym13040590
10.1039/C4SM00642A
10.1002/aelm.202300308
10.1021/jp0612477
10.1021/acsnano.9b03405
10.1063/5.0152400
10.3389/fmech.2017.00009
10.1007/s12039-017-1282-6
10.1007/s11708-022-0815-y
10.1016/j.molstruc.2018.03.100
10.1016/j.vibspec.2012.08.006
10.1007/s40820-019-0271-3
10.1016/j.rser.2022.112624
10.1016/j.surfin.2021.101492
10.1002/adfm.201801683
10.1021/acsami.9b12504
10.1002/jrs.2028
10.1016/j.esci.2023.100123
10.1002/aenm.202003308
10.1007/s10953-015-0393-2
10.1039/C2NR32711B
10.1038/s41598-021-83480-x
10.1063/1.4993215
10.1016/j.saa.2015.07.102
10.1016/j.porgcoat.2015.09.020
10.1177/0954008312459545
10.1016/j.molliq.2014.01.007
10.1063/1.3700154
10.1002/smll.201302806
10.1039/C5TA07648J
10.1016/j.joule.2021.05.005
10.1002/adfm.202107062
10.1021/acsami.1c17186
10.1002/smll.202311099
10.1038/s41598-017-17647-w
10.1002/adma.202002577
10.1016/j.cplett.2004.04.125
10.1016/j.cplett.2013.10.071
10.1038/srep16527
10.1146/annurev-matsci-080819-125403
10.3390/en14144196
10.1038/s41467-023-38269-z
10.1002/jrs.2480
10.1103/PhysRevB.71.035109
10.33961/JECST.2013.4.1.1
10.1002/advs.202000192
10.1002/adma.202203391
10.1002/smll.202203491
10.1002/smll.202300577
10.1021/jp074464w
10.1002/smll.201702989
10.1039/b508541a
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/aenm.202403760
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
ExternalDocumentID 10_1002_aenm_202403760
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AAMNL
AANLZ
AAXRX
AAYXX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CITATION
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
ID FETCH-crossref_primary_10_1002_aenm_2024037603
ISSN 1614-6832
IngestDate Fri Nov 22 01:22:02 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1002_aenm_2024037603
ORCID 0000-0003-1383-1623
ParticipantIDs crossref_primary_10_1002_aenm_202403760
PublicationCentury 2000
PublicationDate 2024-11-13
PublicationDateYYYYMMDD 2024-11-13
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-13
  day: 13
PublicationDecade 2020
PublicationTitle Advanced energy materials
PublicationYear 2024
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Parvini E. (e_1_2_9_22_1) 2023; 9
Gardner Z. (e_1_2_9_23_1) 2023; 20
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Zhao Z. (e_1_2_9_20_1) 2023; 122
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Sankar R. M. (e_1_2_9_29_1) 2012; 25
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
References_xml – ident: e_1_2_9_12_1
  doi: 10.1039/D0CS00035C
– ident: e_1_2_9_2_1
  doi: 10.1002/inf2.12544
– ident: e_1_2_9_15_1
  doi: 10.1002/adma.201805536
– ident: e_1_2_9_54_1
  doi: 10.1016/j.softx.2017.11.002
– volume: 9
  year: 2023
  ident: e_1_2_9_22_1
  publication-title: Advanced Materials Technologies
  doi: 10.1002/admt.202301189
  contributor:
    fullname: Parvini E.
– ident: e_1_2_9_4_1
  doi: 10.1038/s41928-023-00960-w
– ident: e_1_2_9_36_1
  doi: 10.3390/polym13040590
– ident: e_1_2_9_45_1
  doi: 10.1039/C4SM00642A
– ident: e_1_2_9_9_1
  doi: 10.1002/aelm.202300308
– ident: e_1_2_9_46_1
  doi: 10.1021/jp0612477
– ident: e_1_2_9_26_1
  doi: 10.1021/acsnano.9b03405
– volume: 122
  year: 2023
  ident: e_1_2_9_20_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0152400
  contributor:
    fullname: Zhao Z.
– ident: e_1_2_9_16_1
  doi: 10.3389/fmech.2017.00009
– ident: e_1_2_9_43_1
  doi: 10.1007/s12039-017-1282-6
– ident: e_1_2_9_53_1
  doi: 10.1007/s11708-022-0815-y
– ident: e_1_2_9_47_1
  doi: 10.1016/j.molstruc.2018.03.100
– ident: e_1_2_9_44_1
  doi: 10.1016/j.vibspec.2012.08.006
– ident: e_1_2_9_6_1
  doi: 10.1007/s40820-019-0271-3
– ident: e_1_2_9_34_1
  doi: 10.1016/j.rser.2022.112624
– ident: e_1_2_9_32_1
  doi: 10.1016/j.surfin.2021.101492
– ident: e_1_2_9_5_1
  doi: 10.1002/adfm.201801683
– ident: e_1_2_9_13_1
  doi: 10.1021/acsami.9b12504
– ident: e_1_2_9_33_1
  doi: 10.1002/jrs.2028
– ident: e_1_2_9_39_1
  doi: 10.1016/j.esci.2023.100123
– ident: e_1_2_9_11_1
  doi: 10.1002/aenm.202003308
– ident: e_1_2_9_49_1
  doi: 10.1007/s10953-015-0393-2
– ident: e_1_2_9_30_1
  doi: 10.1039/C2NR32711B
– ident: e_1_2_9_10_1
  doi: 10.1038/s41598-021-83480-x
– ident: e_1_2_9_56_1
  doi: 10.1063/1.4993215
– ident: e_1_2_9_42_1
  doi: 10.1016/j.saa.2015.07.102
– ident: e_1_2_9_27_1
  doi: 10.1016/j.porgcoat.2015.09.020
– volume: 25
  start-page: 135
  year: 2012
  ident: e_1_2_9_29_1
  publication-title: High Performance Polym.
  doi: 10.1177/0954008312459545
  contributor:
    fullname: Sankar R. M.
– ident: e_1_2_9_41_1
  doi: 10.1016/j.molliq.2014.01.007
– ident: e_1_2_9_55_1
  doi: 10.1063/1.3700154
– ident: e_1_2_9_1_1
  doi: 10.1002/smll.201302806
– ident: e_1_2_9_40_1
  doi: 10.1039/C5TA07648J
– ident: e_1_2_9_38_1
  doi: 10.1016/j.joule.2021.05.005
– ident: e_1_2_9_51_1
  doi: 10.1002/adfm.202107062
– ident: e_1_2_9_35_1
  doi: 10.1021/acsami.1c17186
– ident: e_1_2_9_21_1
  doi: 10.1002/smll.202311099
– ident: e_1_2_9_25_1
  doi: 10.1038/s41598-017-17647-w
– ident: e_1_2_9_52_1
  doi: 10.1002/adma.202002577
– ident: e_1_2_9_48_1
  doi: 10.1016/j.cplett.2004.04.125
– ident: e_1_2_9_31_1
  doi: 10.1016/j.cplett.2013.10.071
– ident: e_1_2_9_7_1
  doi: 10.1038/srep16527
– ident: e_1_2_9_17_1
  doi: 10.1146/annurev-matsci-080819-125403
– ident: e_1_2_9_28_1
  doi: 10.3390/en14144196
– ident: e_1_2_9_3_1
  doi: 10.1038/s41467-023-38269-z
– ident: e_1_2_9_50_1
  doi: 10.1002/jrs.2480
– ident: e_1_2_9_58_1
  doi: 10.1103/PhysRevB.71.035109
– ident: e_1_2_9_24_1
  doi: 10.33961/JECST.2013.4.1.1
– ident: e_1_2_9_18_1
  doi: 10.1002/advs.202000192
– ident: e_1_2_9_19_1
  doi: 10.1002/adma.202203391
– ident: e_1_2_9_8_1
  doi: 10.1002/smll.202203491
– volume: 20
  year: 2023
  ident: e_1_2_9_23_1
  publication-title: Small
  doi: 10.1002/smll.202300577
  contributor:
    fullname: Gardner Z.
– ident: e_1_2_9_37_1
  doi: 10.1021/jp074464w
– ident: e_1_2_9_14_1
  doi: 10.1002/smll.201702989
– ident: e_1_2_9_57_1
  doi: 10.1039/b508541a
SSID ssj0000491033
Score 4.968343
Snippet The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the...
SourceID crossref
SourceType Aggregation Database
Title Stretchable Energy Storage with Eutectic Gallium Indium Alloy
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZoWWBAPMVbHpAYUMCJkyYZIwjtgCqkdmCLnMSISmlatbi_n3MurwJDGVic6BRbTj7rfL7HF0JuXFP0Uttjhmfz1LAdkRi-F3tgyJme77ynzBe6UHgwcodv3lNohw2hQiP7V6RBBljrytk_oF0PCgK4B8yhBdSh3Qh3HWYGJIqKqBAL-0ZwrtapOYXPNVQ6bDBJ7voiyyZqChoi1Zcgy2ZrId6gyg6QOAqYtjj_OmVHzdH0DNJJnTwTZHX6xOhDTCVG6Yezxu38sipWTmtZjrXTWqwwX6CvFgod-m2HhGXryjysJy11KOz4Rs8r3ZayLUNmph9aG1lghcw1NYAmCHTxHwPr9Njftq06mRCJl61I94_q_h2ybYHu0aqP89fa7QYHIpPxouyimmZF5cmsh_UptEyVls0x3id75WGBBojyAdmS-SHZbVFIHpE23hTxpiXeVONNK7xpiTdFvGmB9zG5fw7HjwOjmkE0R_aR6PfX5Sekm89yeUqo6zPpxmBIMh7bLOEiSRLH5dJxTQdOp_EZud1w0PONn7wgO81SuCTdz4WSV6SzTNV18f2_AISSQFQ
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stretchable+Energy+Storage+with+Eutectic+Gallium+Indium+Alloy&rft.jtitle=Advanced+energy+materials&rft.au=Gupta%2C+Adit&rft.au=Al%E2%80%90Shamery%2C+Noah&rft.au=Lv%2C+Jian&rft.au=Thangavel%2C+Gurunathan&rft.date=2024-11-13&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002%2Faenm.202403760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202403760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon