Stretchable Energy Storage with Eutectic Gallium Indium Alloy
The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the conformability of the skin and textiles. This work focuses on developing an intrinsically stretchable electrode prepared by sedimenting the liqui...
Saved in:
Published in: | Advanced energy materials |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
13-11-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the conformability of the skin and textiles. This work focuses on developing an intrinsically stretchable electrode prepared by sedimenting the liquid metal particles in a conductive stretchable matrix. The liquid metal‐based electrode can be stretched to ≈900% strain, and its conductivity increases by extending to 250% and retaining its initial conductivity at 500% strain. Benefitting from these properties, the assembled all‐solid‐state energy storage device provides high stretchability of up to 150% strain and a capacity of 0.42 mAh cm −3 at a high coulombic efficiency of 90%. The charge storage mechanism is investigated by probing the electrode/electrolyte interface, uncovering the intricate gallium‐bis(trifluoromethane)sulfonimide (Ga‐TFSI) complexation during electrochemical cycling through in situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy (XPS) analyses, and density functional theory (DFT) calculations. This work offers a promising avenue for the advancement of stretchable batteries. |
---|---|
AbstractList | The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the conformability of the skin and textiles. This work focuses on developing an intrinsically stretchable electrode prepared by sedimenting the liquid metal particles in a conductive stretchable matrix. The liquid metal‐based electrode can be stretched to ≈900% strain, and its conductivity increases by extending to 250% and retaining its initial conductivity at 500% strain. Benefitting from these properties, the assembled all‐solid‐state energy storage device provides high stretchability of up to 150% strain and a capacity of 0.42 mAh cm −3 at a high coulombic efficiency of 90%. The charge storage mechanism is investigated by probing the electrode/electrolyte interface, uncovering the intricate gallium‐bis(trifluoromethane)sulfonimide (Ga‐TFSI) complexation during electrochemical cycling through in situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy (XPS) analyses, and density functional theory (DFT) calculations. This work offers a promising avenue for the advancement of stretchable batteries. |
Author | Al‐Shamery, Noah Thangavel, Gurunathan Park, Jinwoo Mandler, Daniel Gupta, Adit Lee, Pooi See Lv, Jian |
Author_xml | – sequence: 1 givenname: Adit surname: Gupta fullname: Gupta, Adit organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore – sequence: 2 givenname: Noah surname: Al‐Shamery fullname: Al‐Shamery, Noah organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore – sequence: 3 givenname: Jian surname: Lv fullname: Lv, Jian organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore – sequence: 4 givenname: Gurunathan surname: Thangavel fullname: Thangavel, Gurunathan organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore – sequence: 5 givenname: Jinwoo surname: Park fullname: Park, Jinwoo organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore, School of Chemical Biological and Battery Engineering Gachon University Seongnam 13120 Republic of Korea – sequence: 6 givenname: Daniel surname: Mandler fullname: Mandler, Daniel organization: Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel – sequence: 7 givenname: Pooi See orcidid: 0000-0003-1383-1623 surname: Lee fullname: Lee, Pooi See organization: School of Materials Science & Engineering Nanyang Technological University 50 Nanyang Avenue Blk N4.1 Singapore 639798 Singapore |
BookMark | eNqVjr0KwjAYRYNUsP6sznmB1i9JqTo4iNSfue4h1q9aSVNJItK314J09y7nLgfOmASmMUjInEHMAPhCoaljDjwBsUxhQEKWsiRKVwkE_Rd8RGbOPeC7ZM1AiJBscm_RF3d10Ugzg_bW0tw3Vt2Qvit_p9nLY-Grgh6U1tWrpidz7bDVummnZFgq7XD244TE--y8O0aFbZyzWMqnrWplW8lAdp2y65R9p_hb-ABYbEbU |
Cites_doi | 10.1039/D0CS00035C 10.1002/inf2.12544 10.1002/adma.201805536 10.1016/j.softx.2017.11.002 10.1002/admt.202301189 10.1038/s41928-023-00960-w 10.3390/polym13040590 10.1039/C4SM00642A 10.1002/aelm.202300308 10.1021/jp0612477 10.1021/acsnano.9b03405 10.1063/5.0152400 10.3389/fmech.2017.00009 10.1007/s12039-017-1282-6 10.1007/s11708-022-0815-y 10.1016/j.molstruc.2018.03.100 10.1016/j.vibspec.2012.08.006 10.1007/s40820-019-0271-3 10.1016/j.rser.2022.112624 10.1016/j.surfin.2021.101492 10.1002/adfm.201801683 10.1021/acsami.9b12504 10.1002/jrs.2028 10.1016/j.esci.2023.100123 10.1002/aenm.202003308 10.1007/s10953-015-0393-2 10.1039/C2NR32711B 10.1038/s41598-021-83480-x 10.1063/1.4993215 10.1016/j.saa.2015.07.102 10.1016/j.porgcoat.2015.09.020 10.1177/0954008312459545 10.1016/j.molliq.2014.01.007 10.1063/1.3700154 10.1002/smll.201302806 10.1039/C5TA07648J 10.1016/j.joule.2021.05.005 10.1002/adfm.202107062 10.1021/acsami.1c17186 10.1002/smll.202311099 10.1038/s41598-017-17647-w 10.1002/adma.202002577 10.1016/j.cplett.2004.04.125 10.1016/j.cplett.2013.10.071 10.1038/srep16527 10.1146/annurev-matsci-080819-125403 10.3390/en14144196 10.1038/s41467-023-38269-z 10.1002/jrs.2480 10.1103/PhysRevB.71.035109 10.33961/JECST.2013.4.1.1 10.1002/advs.202000192 10.1002/adma.202203391 10.1002/smll.202203491 10.1002/smll.202300577 10.1021/jp074464w 10.1002/smll.201702989 10.1039/b508541a |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/aenm.202403760 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
ExternalDocumentID | 10_1002_aenm_202403760 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AAMNL AANLZ AAXRX AAYXX AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CITATION D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- |
ID | FETCH-crossref_primary_10_1002_aenm_2024037603 |
ISSN | 1614-6832 |
IngestDate | Fri Nov 22 01:22:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1002_aenm_2024037603 |
ORCID | 0000-0003-1383-1623 |
ParticipantIDs | crossref_primary_10_1002_aenm_202403760 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-13 |
PublicationDateYYYYMMDD | 2024-11-13 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
References | e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Parvini E. (e_1_2_9_22_1) 2023; 9 Gardner Z. (e_1_2_9_23_1) 2023; 20 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Zhao Z. (e_1_2_9_20_1) 2023; 122 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Sankar R. M. (e_1_2_9_29_1) 2012; 25 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 |
References_xml | – ident: e_1_2_9_12_1 doi: 10.1039/D0CS00035C – ident: e_1_2_9_2_1 doi: 10.1002/inf2.12544 – ident: e_1_2_9_15_1 doi: 10.1002/adma.201805536 – ident: e_1_2_9_54_1 doi: 10.1016/j.softx.2017.11.002 – volume: 9 year: 2023 ident: e_1_2_9_22_1 publication-title: Advanced Materials Technologies doi: 10.1002/admt.202301189 contributor: fullname: Parvini E. – ident: e_1_2_9_4_1 doi: 10.1038/s41928-023-00960-w – ident: e_1_2_9_36_1 doi: 10.3390/polym13040590 – ident: e_1_2_9_45_1 doi: 10.1039/C4SM00642A – ident: e_1_2_9_9_1 doi: 10.1002/aelm.202300308 – ident: e_1_2_9_46_1 doi: 10.1021/jp0612477 – ident: e_1_2_9_26_1 doi: 10.1021/acsnano.9b03405 – volume: 122 year: 2023 ident: e_1_2_9_20_1 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0152400 contributor: fullname: Zhao Z. – ident: e_1_2_9_16_1 doi: 10.3389/fmech.2017.00009 – ident: e_1_2_9_43_1 doi: 10.1007/s12039-017-1282-6 – ident: e_1_2_9_53_1 doi: 10.1007/s11708-022-0815-y – ident: e_1_2_9_47_1 doi: 10.1016/j.molstruc.2018.03.100 – ident: e_1_2_9_44_1 doi: 10.1016/j.vibspec.2012.08.006 – ident: e_1_2_9_6_1 doi: 10.1007/s40820-019-0271-3 – ident: e_1_2_9_34_1 doi: 10.1016/j.rser.2022.112624 – ident: e_1_2_9_32_1 doi: 10.1016/j.surfin.2021.101492 – ident: e_1_2_9_5_1 doi: 10.1002/adfm.201801683 – ident: e_1_2_9_13_1 doi: 10.1021/acsami.9b12504 – ident: e_1_2_9_33_1 doi: 10.1002/jrs.2028 – ident: e_1_2_9_39_1 doi: 10.1016/j.esci.2023.100123 – ident: e_1_2_9_11_1 doi: 10.1002/aenm.202003308 – ident: e_1_2_9_49_1 doi: 10.1007/s10953-015-0393-2 – ident: e_1_2_9_30_1 doi: 10.1039/C2NR32711B – ident: e_1_2_9_10_1 doi: 10.1038/s41598-021-83480-x – ident: e_1_2_9_56_1 doi: 10.1063/1.4993215 – ident: e_1_2_9_42_1 doi: 10.1016/j.saa.2015.07.102 – ident: e_1_2_9_27_1 doi: 10.1016/j.porgcoat.2015.09.020 – volume: 25 start-page: 135 year: 2012 ident: e_1_2_9_29_1 publication-title: High Performance Polym. doi: 10.1177/0954008312459545 contributor: fullname: Sankar R. M. – ident: e_1_2_9_41_1 doi: 10.1016/j.molliq.2014.01.007 – ident: e_1_2_9_55_1 doi: 10.1063/1.3700154 – ident: e_1_2_9_1_1 doi: 10.1002/smll.201302806 – ident: e_1_2_9_40_1 doi: 10.1039/C5TA07648J – ident: e_1_2_9_38_1 doi: 10.1016/j.joule.2021.05.005 – ident: e_1_2_9_51_1 doi: 10.1002/adfm.202107062 – ident: e_1_2_9_35_1 doi: 10.1021/acsami.1c17186 – ident: e_1_2_9_21_1 doi: 10.1002/smll.202311099 – ident: e_1_2_9_25_1 doi: 10.1038/s41598-017-17647-w – ident: e_1_2_9_52_1 doi: 10.1002/adma.202002577 – ident: e_1_2_9_48_1 doi: 10.1016/j.cplett.2004.04.125 – ident: e_1_2_9_31_1 doi: 10.1016/j.cplett.2013.10.071 – ident: e_1_2_9_7_1 doi: 10.1038/srep16527 – ident: e_1_2_9_17_1 doi: 10.1146/annurev-matsci-080819-125403 – ident: e_1_2_9_28_1 doi: 10.3390/en14144196 – ident: e_1_2_9_3_1 doi: 10.1038/s41467-023-38269-z – ident: e_1_2_9_50_1 doi: 10.1002/jrs.2480 – ident: e_1_2_9_58_1 doi: 10.1103/PhysRevB.71.035109 – ident: e_1_2_9_24_1 doi: 10.33961/JECST.2013.4.1.1 – ident: e_1_2_9_18_1 doi: 10.1002/advs.202000192 – ident: e_1_2_9_19_1 doi: 10.1002/adma.202203391 – ident: e_1_2_9_8_1 doi: 10.1002/smll.202203491 – volume: 20 year: 2023 ident: e_1_2_9_23_1 publication-title: Small doi: 10.1002/smll.202300577 contributor: fullname: Gardner Z. – ident: e_1_2_9_37_1 doi: 10.1021/jp074464w – ident: e_1_2_9_14_1 doi: 10.1002/smll.201702989 – ident: e_1_2_9_57_1 doi: 10.1039/b508541a |
SSID | ssj0000491033 |
Score | 4.968343 |
Snippet | The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | Stretchable Energy Storage with Eutectic Gallium Indium Alloy |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZoWWBAPMVbHpAYUMCJkyYZIwjtgCqkdmCLnMSISmlatbi_n3MurwJDGVic6BRbTj7rfL7HF0JuXFP0Uttjhmfz1LAdkRi-F3tgyJme77ynzBe6UHgwcodv3lNohw2hQiP7V6RBBljrytk_oF0PCgK4B8yhBdSh3Qh3HWYGJIqKqBAL-0ZwrtapOYXPNVQ6bDBJ7voiyyZqChoi1Zcgy2ZrId6gyg6QOAqYtjj_OmVHzdH0DNJJnTwTZHX6xOhDTCVG6Yezxu38sipWTmtZjrXTWqwwX6CvFgod-m2HhGXryjysJy11KOz4Rs8r3ZayLUNmph9aG1lghcw1NYAmCHTxHwPr9Njftq06mRCJl61I94_q_h2ybYHu0aqP89fa7QYHIpPxouyimmZF5cmsh_UptEyVls0x3id75WGBBojyAdmS-SHZbVFIHpE23hTxpiXeVONNK7xpiTdFvGmB9zG5fw7HjwOjmkE0R_aR6PfX5Sekm89yeUqo6zPpxmBIMh7bLOEiSRLH5dJxTQdOp_EZud1w0PONn7wgO81SuCTdz4WSV6SzTNV18f2_AISSQFQ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stretchable+Energy+Storage+with+Eutectic+Gallium+Indium+Alloy&rft.jtitle=Advanced+energy+materials&rft.au=Gupta%2C+Adit&rft.au=Al%E2%80%90Shamery%2C+Noah&rft.au=Lv%2C+Jian&rft.au=Thangavel%2C+Gurunathan&rft.date=2024-11-13&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002%2Faenm.202403760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202403760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |