Highly Reversible Lithiation of Additive Free T‐Nb 2 O 5 for a Quarter of a Million Cycles
Fast energy storage via intercalation requires quick ionic diffusion and often results in pseudocapacitive behavior. The cycling stability of such energy storage materials remains understudied despite the relevance to lifetime cost. Orthorhombic niobium oxide (T‐Nb 2 O 5 ) is a rapid ion intercalati...
Saved in:
Published in: | Advanced functional materials Vol. 34; no. 18 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
01-05-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Fast energy storage via intercalation requires quick ionic diffusion and often results in pseudocapacitive behavior. The cycling stability of such energy storage materials remains understudied despite the relevance to lifetime cost. Orthorhombic niobium oxide (T‐Nb
2
O
5
) is a rapid ion intercalation material with a theoretical capacity of 201.7 mAh g
−1
(Li
2
Nb
2
O
5
) and good cycling stability due to the minimal unit cell strain during (de)intercalation. Prior reports of T‐Nb
2
O
5
cycling between 1.3–3.1 V versus Li/Li
+
noted a 50% loss in capacity after 10 000 cycles. Here, cyclic voltammetry is used to identify the role of the voltage window, state of charge, and potentiostatic holds on the cycling stability of mesoporous T‐Nb
2
O
5
thin films. Films cycled between 1.2–3.0 V versus Li/Li
+
without voltage holds (Li
1.1
Nb
2
O
5
) exhibited extreme cycling stability with 90.8% capacity retention after 0.25 million cycles without detectable morphological/crystallographic changes. In contrast, the inclusion of 60 s voltage holds (Li
2.18
Nb
2
O
5
) led to rapid capacity loss with 61.6% retention after 10 000 cycles with corresponding X‐ray diffraction evidence of amorphization. Cycling with other limited voltage windows identifies that most crystallographic degradation occurs at higher extents of lithiation. These results reveal remarkable stability over limited conditions and suggest that T‐Nb
2
O
5
amorphization is associated with high extents of lithiation. |
---|---|
AbstractList | Fast energy storage via intercalation requires quick ionic diffusion and often results in pseudocapacitive behavior. The cycling stability of such energy storage materials remains understudied despite the relevance to lifetime cost. Orthorhombic niobium oxide (T‐Nb
2
O
5
) is a rapid ion intercalation material with a theoretical capacity of 201.7 mAh g
−1
(Li
2
Nb
2
O
5
) and good cycling stability due to the minimal unit cell strain during (de)intercalation. Prior reports of T‐Nb
2
O
5
cycling between 1.3–3.1 V versus Li/Li
+
noted a 50% loss in capacity after 10 000 cycles. Here, cyclic voltammetry is used to identify the role of the voltage window, state of charge, and potentiostatic holds on the cycling stability of mesoporous T‐Nb
2
O
5
thin films. Films cycled between 1.2–3.0 V versus Li/Li
+
without voltage holds (Li
1.1
Nb
2
O
5
) exhibited extreme cycling stability with 90.8% capacity retention after 0.25 million cycles without detectable morphological/crystallographic changes. In contrast, the inclusion of 60 s voltage holds (Li
2.18
Nb
2
O
5
) led to rapid capacity loss with 61.6% retention after 10 000 cycles with corresponding X‐ray diffraction evidence of amorphization. Cycling with other limited voltage windows identifies that most crystallographic degradation occurs at higher extents of lithiation. These results reveal remarkable stability over limited conditions and suggest that T‐Nb
2
O
5
amorphization is associated with high extents of lithiation. |
Author | Gregg, Alexander Stefik, Morgan Wechsler, Sean Cade |
Author_xml | – sequence: 1 givenname: Sean Cade orcidid: 0009-0001-9179-9692 surname: Wechsler fullname: Wechsler, Sean Cade organization: Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA – sequence: 2 givenname: Alexander surname: Gregg fullname: Gregg, Alexander organization: Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA – sequence: 3 givenname: Morgan orcidid: 0000-0002-2645-7442 surname: Stefik fullname: Stefik, Morgan organization: Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA |
BookMark | eNqVj71qAkEURodgIGrSpr4v4GZ-_EspoljEiGJhIQyjeyfeMO7InVXYzkfIM-ZJZCHYp_pO8Z3itESjiAUK8apkpqTUby73x0xLbZQemvcH0VR91e8YqYeNO6vNk2il9C2lGgxMtym2M_o6hApWeEFOtAsIH1QeyJUUC4geRnlOJV0QpowI69_rz-cONCygBz4yOFieHZfI9dfBnEKoxXG1D5iexaN3IeHL37ZFNp2sx7POnmNKjN6emI6OK6ukrRts3WDvDebfwg1VnFBw |
Cites_doi | 10.1021/acsaem.1c00580 10.1007/s40820-016-0123-3 10.1557/s43578-021-00421-0 10.1021/ja9106385 10.1038/srep21829 10.1016/j.jpowsour.2016.12.011 10.1021/acs.chemrev.8b00573 10.1103/PhysRev.56.978 10.3390/electrochem4020013 10.1016/j.carbon.2023.118101 10.1021/jacs.7b03141 10.1039/C8NR03495H 10.1002/smtd.201700094 10.1016/j.carbpol.2023.120678 10.1021/jacs.6b04345 10.1021/acsnano.9b04365 10.1038/nmat3601 10.1016/S0022-0728(01)00532-0 10.1021/cm901452z 10.3390/en15030674 10.1007/s42114-022-00607-y 10.1007/s42114-022-00589-x 10.3390/batteries9070357 10.1039/C5CE02069G 10.1016/j.isci.2019.100767 10.1007/s42114-022-00524-0 10.1002/aenm.201100494 10.1002/batt.202200056 10.1016/S0927-0248(00)00372-X 10.1039/D3QI00819C 10.1016/S0378-7753(03)00029-6 10.1002/adfm.202204126 10.1149/2.040405jes 10.1021/acs.jchemed.7b00361 10.1002/inf2.12105 10.1039/D1MA00146A 10.1038/s41563-022-01242-0 10.1149/2.1061802jes 10.1038/s41563-023-01612-2 10.1016/j.scib.2020.04.011 10.1021/acsaem.0c03187 10.1016/j.jpowsour.2020.229029 10.1021/ja3091438 10.1016/j.etran.2019.100005 10.1002/adfm.202007826 10.1039/C7TA01034F 10.1016/j.etran.2019.100011 10.1016/j.carbon.2022.02.011 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/adfm.202312839 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202312839 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMNL AANLZ AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT |
ID | FETCH-crossref_primary_10_1002_adfm_2023128393 |
ISSN | 1616-301X |
IngestDate | Thu Nov 21 23:57:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-crossref_primary_10_1002_adfm_2023128393 |
ORCID | 0009-0001-9179-9692 0000-0002-2645-7442 |
ParticipantIDs | crossref_primary_10_1002_adfm_202312839 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-00 |
PublicationDecade | 2020 |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
References | e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_3_1 Zhang H. (e_1_2_8_10_1) 2022; 20 Cu S. (e_1_2_8_52_1) 2017; 139 Meng L. (e_1_2_8_11_1) 2022; 20 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Xu Z. (e_1_2_8_49_1) 2021; 2021 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 Das M. (e_1_2_8_24_1) 2022; 16 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Qiu W. (e_1_2_8_23_1) 2022; 20 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_31_1 doi: 10.1021/acsaem.1c00580 – ident: e_1_2_8_2_1 doi: 10.1007/s40820-016-0123-3 – ident: e_1_2_8_46_1 doi: 10.1557/s43578-021-00421-0 – ident: e_1_2_8_47_1 doi: 10.1021/ja9106385 – ident: e_1_2_8_48_1 doi: 10.1038/srep21829 – ident: e_1_2_8_8_1 doi: 10.1016/j.jpowsour.2016.12.011 – ident: e_1_2_8_18_1 doi: 10.1021/acs.chemrev.8b00573 – ident: e_1_2_8_54_1 doi: 10.1103/PhysRev.56.978 – ident: e_1_2_8_12_1 doi: 10.3390/electrochem4020013 – ident: e_1_2_8_20_1 doi: 10.1016/j.carbon.2023.118101 – ident: e_1_2_8_27_1 doi: 10.1021/jacs.7b03141 – ident: e_1_2_8_36_1 doi: 10.1039/C8NR03495H – ident: e_1_2_8_42_1 doi: 10.1002/smtd.201700094 – ident: e_1_2_8_21_1 doi: 10.1016/j.carbpol.2023.120678 – ident: e_1_2_8_28_1 doi: 10.1021/jacs.6b04345 – ident: e_1_2_8_4_1 doi: 10.1021/acsnano.9b04365 – ident: e_1_2_8_16_1 doi: 10.1038/nmat3601 – volume: 20 start-page: 199 year: 2022 ident: e_1_2_8_10_1 publication-title: Eng. Sci. contributor: fullname: Zhang H. – ident: e_1_2_8_33_1 doi: 10.1016/S0022-0728(01)00532-0 – ident: e_1_2_8_25_1 doi: 10.1021/cm901452z – volume: 139 start-page: 1003 year: 2017 ident: e_1_2_8_52_1 publication-title: Polym. Chem. contributor: fullname: Cu S. – ident: e_1_2_8_19_1 doi: 10.3390/en15030674 – volume: 16 start-page: 4 year: 2022 ident: e_1_2_8_24_1 publication-title: ES Energy Environ. contributor: fullname: Das M. – ident: e_1_2_8_5_1 doi: 10.1007/s42114-022-00607-y – ident: e_1_2_8_6_1 doi: 10.1007/s42114-022-00589-x – ident: e_1_2_8_34_1 doi: 10.3390/batteries9070357 – ident: e_1_2_8_39_1 doi: 10.1039/C5CE02069G – ident: e_1_2_8_35_1 doi: 10.1016/j.isci.2019.100767 – ident: e_1_2_8_7_1 doi: 10.1007/s42114-022-00524-0 – ident: e_1_2_8_30_1 doi: 10.1002/aenm.201100494 – ident: e_1_2_8_32_1 doi: 10.1002/batt.202200056 – ident: e_1_2_8_37_1 doi: 10.1016/S0927-0248(00)00372-X – ident: e_1_2_8_22_1 doi: 10.1039/D3QI00819C – ident: e_1_2_8_14_1 doi: 10.1016/S0378-7753(03)00029-6 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.202204126 – ident: e_1_2_8_26_1 doi: 10.1149/2.040405jes – ident: e_1_2_8_51_1 doi: 10.1021/acs.jchemed.7b00361 – ident: e_1_2_8_9_1 doi: 10.1002/inf2.12105 – ident: e_1_2_8_45_1 doi: 10.1039/D1MA00146A – ident: e_1_2_8_40_1 doi: 10.1038/s41563-022-01242-0 – ident: e_1_2_8_44_1 doi: 10.1149/2.1061802jes – ident: e_1_2_8_41_1 doi: 10.1038/s41563-023-01612-2 – ident: e_1_2_8_38_1 doi: 10.1016/j.scib.2020.04.011 – ident: e_1_2_8_43_1 doi: 10.1021/acsaem.0c03187 – volume: 20 start-page: 134 year: 2022 ident: e_1_2_8_11_1 publication-title: Eng. Sci. contributor: fullname: Meng L. – volume: 2021 year: 2021 ident: e_1_2_8_49_1 publication-title: Research (SPJ) contributor: fullname: Xu Z. – ident: e_1_2_8_50_1 doi: 10.1016/j.jpowsour.2020.229029 – volume: 20 start-page: 100 year: 2022 ident: e_1_2_8_23_1 publication-title: Eng. Sci. contributor: fullname: Qiu W. – ident: e_1_2_8_1_1 doi: 10.1021/ja3091438 – ident: e_1_2_8_3_1 doi: 10.1016/j.etran.2019.100005 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.202007826 – ident: e_1_2_8_53_1 doi: 10.1039/C7TA01034F – ident: e_1_2_8_13_1 doi: 10.1016/j.etran.2019.100011 – ident: e_1_2_8_15_1 doi: 10.1016/j.carbon.2022.02.011 |
SSID | ssj0017734 |
Score | 4.99009 |
Snippet | Fast energy storage via intercalation requires quick ionic diffusion and often results in pseudocapacitive behavior. The cycling stability of such energy... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | Highly Reversible Lithiation of Additive Free T‐Nb 2 O 5 for a Quarter of a Million Cycles |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELbassCAeIq3PCAxRIU2TvMYq9KqA7RIzcCAFDmNA5VQi_oYkBj4CfxGfgl38SMp6lAGliiy4sTJfTqfz993IeSSi5j7KUurCWc2LFCYWw1QjcZ8wUSNp14SoHa4O_B6j_5t22mXSh961W_a_tXS0Aa2RuXsH6xtbgoNcA42hyNYHY5r2R2JG68YWGd8C9RF3Y3mLyMTGTaTRNKFOlMhrNCQHXqxZVt9qyFplZrsKeWTKBjE7q135NAV49mmphDg_KjSihADyxfNd32GLzOlOBxg5r_FE4MnFMk8L0ltTNJnLtJR5qzvs39PFRMUtpPTAZVPdetIr8v-jANTTrFN6cKVI1ZZTQU4f6WDlwVjeZJiFQGITSE6CvKpTG_f_5rhDO9Q1mi2I-wfmf5lsmGDm0IvydiD2YPyPMlJ0MPXJT9r9s3y8wshTSE2CXfItlpU0KZEwy4pifEe2SqUmtwnTxIXNMcFzXFBJynVuKCICxp-f371YmrTPm1QQATlVCECr-VUIYJKRByQ6047bHWreoDRmyxiEq3-FOyQVMaTsTgiFBbqcSpq9aHPfSdwOR_GceoLiC8b3A0c-5hcrXnTk7WvPCWbOYLOSGU-XYhzUp4li4vMNj8TV1lh |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Reversible+Lithiation+of+Additive+Free+T%E2%80%90Nb+2+O+5+for+a+Quarter+of+a+Million+Cycles&rft.jtitle=Advanced+functional+materials&rft.au=Wechsler%2C+Sean+Cade&rft.au=Gregg%2C+Alexander&rft.au=Stefik%2C+Morgan&rft.date=2024-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=18&rft_id=info:doi/10.1002%2Fadfm.202312839&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202312839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |