Highly Reversible Lithiation of Additive Free T‐Nb 2 O 5 for a Quarter of a Million Cycles

Fast energy storage via intercalation requires quick ionic diffusion and often results in pseudocapacitive behavior. The cycling stability of such energy storage materials remains understudied despite the relevance to lifetime cost. Orthorhombic niobium oxide (T‐Nb 2 O 5 ) is a rapid ion intercalati...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 34; no. 18
Main Authors: Wechsler, Sean Cade, Gregg, Alexander, Stefik, Morgan
Format: Journal Article
Language:English
Published: 01-05-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fast energy storage via intercalation requires quick ionic diffusion and often results in pseudocapacitive behavior. The cycling stability of such energy storage materials remains understudied despite the relevance to lifetime cost. Orthorhombic niobium oxide (T‐Nb 2 O 5 ) is a rapid ion intercalation material with a theoretical capacity of 201.7 mAh g −1 (Li 2 Nb 2 O 5 ) and good cycling stability due to the minimal unit cell strain during (de)intercalation. Prior reports of T‐Nb 2 O 5 cycling between 1.3–3.1 V versus Li/Li + noted a 50% loss in capacity after 10 000 cycles. Here, cyclic voltammetry is used to identify the role of the voltage window, state of charge, and potentiostatic holds on the cycling stability of mesoporous T‐Nb 2 O 5 thin films. Films cycled between 1.2–3.0 V versus Li/Li + without voltage holds (Li 1.1 Nb 2 O 5 ) exhibited extreme cycling stability with 90.8% capacity retention after 0.25 million cycles without detectable morphological/crystallographic changes. In contrast, the inclusion of 60 s voltage holds (Li 2.18 Nb 2 O 5 ) led to rapid capacity loss with 61.6% retention after 10 000 cycles with corresponding X‐ray diffraction evidence of amorphization. Cycling with other limited voltage windows identifies that most crystallographic degradation occurs at higher extents of lithiation. These results reveal remarkable stability over limited conditions and suggest that T‐Nb 2 O 5 amorphization is associated with high extents of lithiation.
AbstractList Fast energy storage via intercalation requires quick ionic diffusion and often results in pseudocapacitive behavior. The cycling stability of such energy storage materials remains understudied despite the relevance to lifetime cost. Orthorhombic niobium oxide (T‐Nb 2 O 5 ) is a rapid ion intercalation material with a theoretical capacity of 201.7 mAh g −1 (Li 2 Nb 2 O 5 ) and good cycling stability due to the minimal unit cell strain during (de)intercalation. Prior reports of T‐Nb 2 O 5 cycling between 1.3–3.1 V versus Li/Li + noted a 50% loss in capacity after 10 000 cycles. Here, cyclic voltammetry is used to identify the role of the voltage window, state of charge, and potentiostatic holds on the cycling stability of mesoporous T‐Nb 2 O 5 thin films. Films cycled between 1.2–3.0 V versus Li/Li + without voltage holds (Li 1.1 Nb 2 O 5 ) exhibited extreme cycling stability with 90.8% capacity retention after 0.25 million cycles without detectable morphological/crystallographic changes. In contrast, the inclusion of 60 s voltage holds (Li 2.18 Nb 2 O 5 ) led to rapid capacity loss with 61.6% retention after 10 000 cycles with corresponding X‐ray diffraction evidence of amorphization. Cycling with other limited voltage windows identifies that most crystallographic degradation occurs at higher extents of lithiation. These results reveal remarkable stability over limited conditions and suggest that T‐Nb 2 O 5 amorphization is associated with high extents of lithiation.
Author Gregg, Alexander
Stefik, Morgan
Wechsler, Sean Cade
Author_xml – sequence: 1
  givenname: Sean Cade
  orcidid: 0009-0001-9179-9692
  surname: Wechsler
  fullname: Wechsler, Sean Cade
  organization: Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
– sequence: 2
  givenname: Alexander
  surname: Gregg
  fullname: Gregg, Alexander
  organization: Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
– sequence: 3
  givenname: Morgan
  orcidid: 0000-0002-2645-7442
  surname: Stefik
  fullname: Stefik, Morgan
  organization: Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
BookMark eNqVj71qAkEURodgIGrSpr4v4GZ-_EspoljEiGJhIQyjeyfeMO7InVXYzkfIM-ZJZCHYp_pO8Z3itESjiAUK8apkpqTUby73x0xLbZQemvcH0VR91e8YqYeNO6vNk2il9C2lGgxMtym2M_o6hApWeEFOtAsIH1QeyJUUC4geRnlOJV0QpowI69_rz-cONCygBz4yOFieHZfI9dfBnEKoxXG1D5iexaN3IeHL37ZFNp2sx7POnmNKjN6emI6OK6ukrRts3WDvDebfwg1VnFBw
Cites_doi 10.1021/acsaem.1c00580
10.1007/s40820-016-0123-3
10.1557/s43578-021-00421-0
10.1021/ja9106385
10.1038/srep21829
10.1016/j.jpowsour.2016.12.011
10.1021/acs.chemrev.8b00573
10.1103/PhysRev.56.978
10.3390/electrochem4020013
10.1016/j.carbon.2023.118101
10.1021/jacs.7b03141
10.1039/C8NR03495H
10.1002/smtd.201700094
10.1016/j.carbpol.2023.120678
10.1021/jacs.6b04345
10.1021/acsnano.9b04365
10.1038/nmat3601
10.1016/S0022-0728(01)00532-0
10.1021/cm901452z
10.3390/en15030674
10.1007/s42114-022-00607-y
10.1007/s42114-022-00589-x
10.3390/batteries9070357
10.1039/C5CE02069G
10.1016/j.isci.2019.100767
10.1007/s42114-022-00524-0
10.1002/aenm.201100494
10.1002/batt.202200056
10.1016/S0927-0248(00)00372-X
10.1039/D3QI00819C
10.1016/S0378-7753(03)00029-6
10.1002/adfm.202204126
10.1149/2.040405jes
10.1021/acs.jchemed.7b00361
10.1002/inf2.12105
10.1039/D1MA00146A
10.1038/s41563-022-01242-0
10.1149/2.1061802jes
10.1038/s41563-023-01612-2
10.1016/j.scib.2020.04.011
10.1021/acsaem.0c03187
10.1016/j.jpowsour.2020.229029
10.1021/ja3091438
10.1016/j.etran.2019.100005
10.1002/adfm.202007826
10.1039/C7TA01034F
10.1016/j.etran.2019.100011
10.1016/j.carbon.2022.02.011
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/adfm.202312839
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202312839
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
ID FETCH-crossref_primary_10_1002_adfm_2023128393
ISSN 1616-301X
IngestDate Thu Nov 21 23:57:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1002_adfm_2023128393
ORCID 0009-0001-9179-9692
0000-0002-2645-7442
ParticipantIDs crossref_primary_10_1002_adfm_202312839
PublicationCentury 2000
PublicationDate 2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-00
PublicationDecade 2020
PublicationTitle Advanced functional materials
PublicationYear 2024
References e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
Zhang H. (e_1_2_8_10_1) 2022; 20
Cu S. (e_1_2_8_52_1) 2017; 139
Meng L. (e_1_2_8_11_1) 2022; 20
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Xu Z. (e_1_2_8_49_1) 2021; 2021
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
Das M. (e_1_2_8_24_1) 2022; 16
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Qiu W. (e_1_2_8_23_1) 2022; 20
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_31_1
  doi: 10.1021/acsaem.1c00580
– ident: e_1_2_8_2_1
  doi: 10.1007/s40820-016-0123-3
– ident: e_1_2_8_46_1
  doi: 10.1557/s43578-021-00421-0
– ident: e_1_2_8_47_1
  doi: 10.1021/ja9106385
– ident: e_1_2_8_48_1
  doi: 10.1038/srep21829
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jpowsour.2016.12.011
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.chemrev.8b00573
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRev.56.978
– ident: e_1_2_8_12_1
  doi: 10.3390/electrochem4020013
– ident: e_1_2_8_20_1
  doi: 10.1016/j.carbon.2023.118101
– ident: e_1_2_8_27_1
  doi: 10.1021/jacs.7b03141
– ident: e_1_2_8_36_1
  doi: 10.1039/C8NR03495H
– ident: e_1_2_8_42_1
  doi: 10.1002/smtd.201700094
– ident: e_1_2_8_21_1
  doi: 10.1016/j.carbpol.2023.120678
– ident: e_1_2_8_28_1
  doi: 10.1021/jacs.6b04345
– ident: e_1_2_8_4_1
  doi: 10.1021/acsnano.9b04365
– ident: e_1_2_8_16_1
  doi: 10.1038/nmat3601
– volume: 20
  start-page: 199
  year: 2022
  ident: e_1_2_8_10_1
  publication-title: Eng. Sci.
  contributor:
    fullname: Zhang H.
– ident: e_1_2_8_33_1
  doi: 10.1016/S0022-0728(01)00532-0
– ident: e_1_2_8_25_1
  doi: 10.1021/cm901452z
– volume: 139
  start-page: 1003
  year: 2017
  ident: e_1_2_8_52_1
  publication-title: Polym. Chem.
  contributor:
    fullname: Cu S.
– ident: e_1_2_8_19_1
  doi: 10.3390/en15030674
– volume: 16
  start-page: 4
  year: 2022
  ident: e_1_2_8_24_1
  publication-title: ES Energy Environ.
  contributor:
    fullname: Das M.
– ident: e_1_2_8_5_1
  doi: 10.1007/s42114-022-00607-y
– ident: e_1_2_8_6_1
  doi: 10.1007/s42114-022-00589-x
– ident: e_1_2_8_34_1
  doi: 10.3390/batteries9070357
– ident: e_1_2_8_39_1
  doi: 10.1039/C5CE02069G
– ident: e_1_2_8_35_1
  doi: 10.1016/j.isci.2019.100767
– ident: e_1_2_8_7_1
  doi: 10.1007/s42114-022-00524-0
– ident: e_1_2_8_30_1
  doi: 10.1002/aenm.201100494
– ident: e_1_2_8_32_1
  doi: 10.1002/batt.202200056
– ident: e_1_2_8_37_1
  doi: 10.1016/S0927-0248(00)00372-X
– ident: e_1_2_8_22_1
  doi: 10.1039/D3QI00819C
– ident: e_1_2_8_14_1
  doi: 10.1016/S0378-7753(03)00029-6
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.202204126
– ident: e_1_2_8_26_1
  doi: 10.1149/2.040405jes
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.jchemed.7b00361
– ident: e_1_2_8_9_1
  doi: 10.1002/inf2.12105
– ident: e_1_2_8_45_1
  doi: 10.1039/D1MA00146A
– ident: e_1_2_8_40_1
  doi: 10.1038/s41563-022-01242-0
– ident: e_1_2_8_44_1
  doi: 10.1149/2.1061802jes
– ident: e_1_2_8_41_1
  doi: 10.1038/s41563-023-01612-2
– ident: e_1_2_8_38_1
  doi: 10.1016/j.scib.2020.04.011
– ident: e_1_2_8_43_1
  doi: 10.1021/acsaem.0c03187
– volume: 20
  start-page: 134
  year: 2022
  ident: e_1_2_8_11_1
  publication-title: Eng. Sci.
  contributor:
    fullname: Meng L.
– volume: 2021
  year: 2021
  ident: e_1_2_8_49_1
  publication-title: Research (SPJ)
  contributor:
    fullname: Xu Z.
– ident: e_1_2_8_50_1
  doi: 10.1016/j.jpowsour.2020.229029
– volume: 20
  start-page: 100
  year: 2022
  ident: e_1_2_8_23_1
  publication-title: Eng. Sci.
  contributor:
    fullname: Qiu W.
– ident: e_1_2_8_1_1
  doi: 10.1021/ja3091438
– ident: e_1_2_8_3_1
  doi: 10.1016/j.etran.2019.100005
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.202007826
– ident: e_1_2_8_53_1
  doi: 10.1039/C7TA01034F
– ident: e_1_2_8_13_1
  doi: 10.1016/j.etran.2019.100011
– ident: e_1_2_8_15_1
  doi: 10.1016/j.carbon.2022.02.011
SSID ssj0017734
Score 4.99009
Snippet Fast energy storage via intercalation requires quick ionic diffusion and often results in pseudocapacitive behavior. The cycling stability of such energy...
SourceID crossref
SourceType Aggregation Database
Title Highly Reversible Lithiation of Additive Free T‐Nb 2 O 5 for a Quarter of a Million Cycles
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELbassCAeIq3PCAxRIU2TvMYq9KqA7RIzcCAFDmNA5VQi_oYkBj4CfxGfgl38SMp6lAGliiy4sTJfTqfz993IeSSi5j7KUurCWc2LFCYWw1QjcZ8wUSNp14SoHa4O_B6j_5t22mXSh961W_a_tXS0Aa2RuXsH6xtbgoNcA42hyNYHY5r2R2JG68YWGd8C9RF3Y3mLyMTGTaTRNKFOlMhrNCQHXqxZVt9qyFplZrsKeWTKBjE7q135NAV49mmphDg_KjSihADyxfNd32GLzOlOBxg5r_FE4MnFMk8L0ltTNJnLtJR5qzvs39PFRMUtpPTAZVPdetIr8v-jANTTrFN6cKVI1ZZTQU4f6WDlwVjeZJiFQGITSE6CvKpTG_f_5rhDO9Q1mi2I-wfmf5lsmGDm0IvydiD2YPyPMlJ0MPXJT9r9s3y8wshTSE2CXfItlpU0KZEwy4pifEe2SqUmtwnTxIXNMcFzXFBJynVuKCICxp-f371YmrTPm1QQATlVCECr-VUIYJKRByQ6047bHWreoDRmyxiEq3-FOyQVMaTsTgiFBbqcSpq9aHPfSdwOR_GceoLiC8b3A0c-5hcrXnTk7WvPCWbOYLOSGU-XYhzUp4li4vMNj8TV1lh
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Reversible+Lithiation+of+Additive+Free+T%E2%80%90Nb+2+O+5+for+a+Quarter+of+a+Million+Cycles&rft.jtitle=Advanced+functional+materials&rft.au=Wechsler%2C+Sean+Cade&rft.au=Gregg%2C+Alexander&rft.au=Stefik%2C+Morgan&rft.date=2024-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=18&rft_id=info:doi/10.1002%2Fadfm.202312839&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202312839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon