Response of antioxidant defense system in copepod Calanus sinicus Brodsky exposed to CO_2-acidified seawater
Marine zooplankton responds sensitively to elevated seawater CO_2 concentration. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated CO_2concentration(0.08%, 0.20%, 0.50% and 1.00%) on antioxidant defense components, as well...
Saved in:
Published in: | 海洋学报:英文版 no. 8; pp. 82 - 88 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
2016
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Marine zooplankton responds sensitively to elevated seawater CO_2 concentration. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated CO_2concentration(0.08%, 0.20%, 0.50% and 1.00%) on antioxidant defense components, as well as two detoxification enzymes of Calanus sinicus(copepod). The results showed that glutathione peroxidase(GPx) activity exposed to CO_2-acidified seawater was significantly stimulated while other antioxidant components, including glutathione-Stransferase(GST) activity, superoxide dismutase(SOD) activity decreased significantly with reduced glutathione(GSH) level and GSH/oxidized glutathione(GSSG) value. CO_2-acidified seawater exhibited stimulatory effects on adenosine triphosphatase(ATPase) activity and acetylcholinesterase(Ach E) activity was inhibited. Moreover, the results of principal component analysis indicated that 75.93% of the overall variance was explained by the first two principal components. The elevated CO_2 concentration may affect the metabolism and survivals of copepods through impacts these enzymes activities. Further studies are needed to focus on the synergistic effects of elevated CO_2 concentration and other environmental factors on copepods. |
---|---|
Bibliography: | acidified seawater carbon dioxide Calanus sinicus antioxidant defense system 11-2056/P Marine zooplankton responds sensitively to elevated seawater CO_2 concentration. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated CO_2concentration(0.08%, 0.20%, 0.50% and 1.00%) on antioxidant defense components, as well as two detoxification enzymes of Calanus sinicus(copepod). The results showed that glutathione peroxidase(GPx) activity exposed to CO_2-acidified seawater was significantly stimulated while other antioxidant components, including glutathione-Stransferase(GST) activity, superoxide dismutase(SOD) activity decreased significantly with reduced glutathione(GSH) level and GSH/oxidized glutathione(GSSG) value. CO_2-acidified seawater exhibited stimulatory effects on adenosine triphosphatase(ATPase) activity and acetylcholinesterase(Ach E) activity was inhibited. Moreover, the results of principal component analysis indicated that 75.93% of the overall variance was explained by the first two principal components. The elevated CO_2 concentration may affect the metabolism and survivals of copepods through impacts these enzymes activities. Further studies are needed to focus on the synergistic effects of elevated CO_2 concentration and other environmental factors on copepods. |
ISSN: | 0253-505X 1869-1099 |