A generalization of Pohlig-Hellman simplification in elliptic curve cryptography

Let E be an elliptic curve over F p. We investigate the construction of elliptic curve cryptosystems which use a commutative subring S ⊂ End(E) strictly larger than Z. Elliptic curve cryptosystems can be constructed based on the difficulty of solving this problem. We formulate a Generalized Elliptic...

Full description

Saved in:
Bibliographic Details
Main Author: Bone, Eric
Format: Dissertation
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Let E be an elliptic curve over F p. We investigate the construction of elliptic curve cryptosystems which use a commutative subring S ⊂ End(E) strictly larger than Z. Elliptic curve cryptosystems can be constructed based on the difficulty of solving this problem. We formulate a Generalized Elliptic Curve Discrete Logarithm Problem as follows: given P ∈ E(F pr ) and Q in the S-module generated by P, find y ∈ S such that Q = y P. Let 4 be the p-th power Frobenius map. We display a generalization of Pohlig-Hellman simplification to the case where S = Z[ 4 ] = End(E). We write S/ann P as a product of local rings. Then we show how to solve for the projection of y in each local ring by solving a series of congruences modulo the annihilators of progressively smaller powers of the maximal ideal. The most interesting cases are those where the maximal ideal is not principal.
AbstractList Let E be an elliptic curve over F p. We investigate the construction of elliptic curve cryptosystems which use a commutative subring S ⊂ End(E) strictly larger than Z. Elliptic curve cryptosystems can be constructed based on the difficulty of solving this problem. We formulate a Generalized Elliptic Curve Discrete Logarithm Problem as follows: given P ∈ E(F pr ) and Q in the S-module generated by P, find y ∈ S such that Q = y P. Let 4 be the p-th power Frobenius map. We display a generalization of Pohlig-Hellman simplification to the case where S = Z[ 4 ] = End(E). We write S/ann P as a product of local rings. Then we show how to solve for the projection of y in each local ring by solving a series of congruences modulo the annihilators of progressively smaller powers of the maximal ideal. The most interesting cases are those where the maximal ideal is not principal.
Author Bone, Eric
Author_xml – sequence: 1
  fullname: Bone, Eric
BookMark eNqNyr8KwjAQgPEMOvjvHQ6cC9VCnYModevgXmK4pKfpJVyr0D69gj6A0zd8v6WacWRcqFqDR0YxgSYzUGSIDurYBvJZhSF0hqGnLgVyZL-AGD6D0kAW7FNeCFbGNEQvJrXjWs2dCT1ufl2p7fl0PVbZ7T61kf0DmyTUGRkbrS_FLj-U-b74T70BEv48QQ
ContentType Dissertation
DBID A6X
DatabaseName ProQuest Dissertations and Theses Full Text - DRAA
DatabaseTitle Dissertation Abstracts International
DatabaseTitleList Dissertation Abstracts International
Database_xml – sequence: 1
  dbid: A6X
  name: ProQuest Dissertations and Theses Full Text - DRAA
  url: http://www.pqdtcn.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DissertationCategory Mathematics
DissertationDegree Ph.D.
DissertationDegreeDate Thu Jan 01 00:00:00 EST 2004
DissertationDegreeDate_xml – year: 2004
  text: 2004
DissertationSchool Brandeis University
DissertationSchool_xml – name: Brandeis University
ExternalDocumentID AAI3107602
GroupedDBID A6X
ID FETCH-bjzhongke_primary_AAI31076023
IEDL.DBID A6X
IngestDate Thu May 12 13:02:03 EDT 2022
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-bjzhongke_primary_AAI31076023
Notes Source: Dissertation Abstracts International, Volume: 64-10, Section: B, page: 4971.
Adviser: Fred Diamond.
PageCount 127
ParticipantIDs bjzhongke_primary_AAI3107602
Score 2.8822534
Snippet Let E be an elliptic curve over F p. We investigate the construction of elliptic curve cryptosystems which use a commutative subring S ⊂ End(E) strictly larger...
SourceID bjzhongke
SourceType Publisher
SubjectTerms mathematics
Title A generalization of Pohlig-Hellman simplification in elliptic curve cryptography
URI http://www.pqdtcn.com/thesisDetails/A2EE19D76D159767ED7F88D03A67FE28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwFHyCLqgMfAtQQZZgtYhJsJMxIqnKAKoEQ7cqsZ00qDghTpDg12OnacXUidmSLXt4d8--OwPcEm44qCsYFsTh2JNE4sDlHjZwLkx7IBPftX7nySt7mflRbGNy1r9tWlVl9SkarroqbTiQLnTUiSn1XXgfxySIGI0MBjNqNcVj348cN6Q2v75z_BqEtfyIzoawl77_LEqVryP-O8QYH_zPWoewH_15MD-CHamOYfi8yVrVJzANUb7Kju4tlajM0LRcLIscG1BZfiQK6cIKx7P-fg4VCtkcTlMtOOJt_SURr7-rpk-vPoWbcfz2OMGbnc2rVSbFPAyfDFFj1EDwGQxUqeQ5IJKK1GGSZEHieZlpdB6I9ZEKytLMyzz_AkbbZrrcPjyCQVO38gp2tWivu0P_BYExlNg
link.rule.ids 312,782,786,787,2064
linkProvider Digital Resource Acquisition Alliance of Chinese Academic Libraries (DRAA)
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=A+generalization+of+Pohlig-Hellman+simplification+in+elliptic+curve+cryptography&rft.DBID=A6X&rft.au=Bone%2C+Eric&rft.inst=Brandeis+University&rft.externalDocID=AAI3107602