基于边缘计算和深度学习的有限信息配电网单相接地故障区段定位

目前围绕量测条件受限的配电网展开的故障定位研究较少,且传统的主站集中式故障定位系统在实时性与安全性等方面存在不足.针对上述问题,提出一种基于边缘计算和深度学习的单相接地故障区段定位方法.首先,构建基于分区修正的边缘计算单元配置多目标优化模型.该模型通过分区修正方法降低了故障定位系统的通信时延,提升了数据传输安全性,进而保障配电网安全运行.其次,将基于数据驱动的智能算法应用于配电网故障区段定位,选择易获取的相电流稳态有效值在故障前后的变化量作为故障特征,利用全连接型深度神经网络学习样本特征与标签间的映射关系,得到离线训练好的定位模型并储存在边缘节点以实现快速故障定位.最后,以IEEE33节点系统...

Full description

Saved in:
Bibliographic Details
Published in:电力系统保护与控制 Vol. 51; no. 24; pp. 22 - 32
Main Authors: 张大波, 李雪婷, 陶维青
Format: Journal Article
Language:Chinese
Published: 新能源利用与节能安徽省重点实验室(合肥工业大学),安徽 合肥 230009%国网山东省电力公司济宁供电公司,山东 济宁 272000 16-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract 目前围绕量测条件受限的配电网展开的故障定位研究较少,且传统的主站集中式故障定位系统在实时性与安全性等方面存在不足.针对上述问题,提出一种基于边缘计算和深度学习的单相接地故障区段定位方法.首先,构建基于分区修正的边缘计算单元配置多目标优化模型.该模型通过分区修正方法降低了故障定位系统的通信时延,提升了数据传输安全性,进而保障配电网安全运行.其次,将基于数据驱动的智能算法应用于配电网故障区段定位,选择易获取的相电流稳态有效值在故障前后的变化量作为故障特征,利用全连接型深度神经网络学习样本特征与标签间的映射关系,得到离线训练好的定位模型并储存在边缘节点以实现快速故障定位.最后,以IEEE33节点系统为例进行仿真.算例结果表明该模型在分布式电源接入、高阻故障、噪声干扰以及拓扑改变等情况下均具有良好表现.
AbstractList 目前围绕量测条件受限的配电网展开的故障定位研究较少,且传统的主站集中式故障定位系统在实时性与安全性等方面存在不足.针对上述问题,提出一种基于边缘计算和深度学习的单相接地故障区段定位方法.首先,构建基于分区修正的边缘计算单元配置多目标优化模型.该模型通过分区修正方法降低了故障定位系统的通信时延,提升了数据传输安全性,进而保障配电网安全运行.其次,将基于数据驱动的智能算法应用于配电网故障区段定位,选择易获取的相电流稳态有效值在故障前后的变化量作为故障特征,利用全连接型深度神经网络学习样本特征与标签间的映射关系,得到离线训练好的定位模型并储存在边缘节点以实现快速故障定位.最后,以IEEE33节点系统为例进行仿真.算例结果表明该模型在分布式电源接入、高阻故障、噪声干扰以及拓扑改变等情况下均具有良好表现.
Abstract_FL At present,there are few studies on fault location in a distribution network with limited measurement conditions.In addition,the traditional centralized fault location system of a master station has shortcomings in real-time and security.Thus,a single-phase ground fault section location method based on edge computing and deep learning is proposed.First,a multi-objective optimization model of edge computing unit configuration based on partition correction is constructed.The model reduces the communication delay of a fault location system and improves the security of data transmission by the partition correction method,thus ensuring the safe operation of the network.Second,a data-driven intelligent algorithm is applied to the fault section location.The variation of the steady-state effective value of the phase current before and after the fault is selected as the fault feature.A fully connected deep neural network is used to learn the mapping relationship between sample features and labels,and an offline trained location model is obtained and stored at the edge nodes to achieve fast fault location.Finally,the IEEE 33-bus system is taken as an example for simulation.The example shows that the model performs well with distributed generation access,high resistance fault,noise interference and topology change.
Author 陶维青
李雪婷
张大波
AuthorAffiliation 新能源利用与节能安徽省重点实验室(合肥工业大学),安徽 合肥 230009%国网山东省电力公司济宁供电公司,山东 济宁 272000
AuthorAffiliation_xml – name: 新能源利用与节能安徽省重点实验室(合肥工业大学),安徽 合肥 230009%国网山东省电力公司济宁供电公司,山东 济宁 272000
Author_FL ZHANG Dabo
LI Xueting
TAO Weiqing
Author_FL_xml – sequence: 1
  fullname: ZHANG Dabo
– sequence: 2
  fullname: LI Xueting
– sequence: 3
  fullname: TAO Weiqing
Author_xml – sequence: 1
  fullname: 张大波
– sequence: 2
  fullname: 李雪婷
– sequence: 3
  fullname: 陶维青
BookMark eNotjz1Lw0AAQG-oYK39Ba6uiXe5S-5ulOIXFFwKjiW55KRV0moQZ8EOQltULGosaAe7GXUo2mD1z-SS9l9Y0Olt7_GWQM5v-B4AKwjqiFOG1-q68A9qejNoCt3AkDCcA3lkUaJhgsxFUAyCmgMhRqZpMZ4He-oxTuLu9Hucfd1No0EW3arrdvrxruKhehkm46csPE_7F7P7y-RnkJ69zlqd7GaUTa5Up5c9fKbdZ9V_S3utWdhX7TiNRioKk0lnGSxI-zDwiv8sgMrmRqW0rZV3t3ZK62Ut4Bxr3EWeKWwiEUaG6xFJmCGoFJ7jMumYkkJiUIyEawlKkMehkBZzhKQcMyGZiQtg9U97avvS9ver9cbJsT8PVuvukQENbJD5LP4FAMV18w
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.230483
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Single-phase ground fault section location in distribution networks with limited information based on edge computing and deep learning
EndPage 32
ExternalDocumentID jdq202324003
GroupedDBID -03
2B.
4A8
5XA
5XD
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
U1G
ID FETCH-LOGICAL-s993-9d1e5ca4f1312de4f482c7fcebd8fb5f7042731cd6c741e90cf68bcf7938cf853
ISSN 1674-3415
IngestDate Wed Nov 06 04:36:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords 配电网有限量测
故障区段定位
distribution network with limited measurement
deep learning
distributed generation
单相接地故障
边缘计算
分布式电源
edge computing
深度学习
fault section location
single-phase ground fault
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s993-9d1e5ca4f1312de4f482c7fcebd8fb5f7042731cd6c741e90cf68bcf7938cf853
PageCount 11
ParticipantIDs wanfang_journals_jdq202324003
PublicationCentury 2000
PublicationDate 2023-12-16
PublicationDateYYYYMMDD 2023-12-16
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2023
Publisher 新能源利用与节能安徽省重点实验室(合肥工业大学),安徽 合肥 230009%国网山东省电力公司济宁供电公司,山东 济宁 272000
Publisher_xml – name: 新能源利用与节能安徽省重点实验室(合肥工业大学),安徽 合肥 230009%国网山东省电力公司济宁供电公司,山东 济宁 272000
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.4889202
Snippet ...
SourceID wanfang
SourceType Aggregation Database
StartPage 22
Title 基于边缘计算和深度学习的有限信息配电网单相接地故障区段定位
URI https://d.wanfangdata.com.cn/periodical/jdq202324003
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNA0OrjwgWBAPEq6oE9RQHHXtu7x7XjiBMXKsGtcvzgJYVC6IUbEj0gtRUgKqBUgh7ojQCHChpR-Jk4af-CmfE2cckBOKBE1mY875nYs6t9GMZFmdrw4Sl0cnBJDlT4VSGabjX1olrTFpFsRnR0wjXv6g1RD3k4MX1w1OEI9l8jDTCINa6c_YdoD5kCANoQc7hC1OH6V3FnocNkg_mKhRyvImShYH7IfMlCj_kBkwIhKmSqhhBoSI-oLCYCFrrMB7QaQoBcudhQdWpwZKJMpJLAmSOyDJgAzpJJ-JqE0yDOLhSpTDXwlnCYqBMV3HVIjTqTJALgkiDSZ74gKlDMIX0C5pskwkEOKEIhEKkCMtBF5X1CRisKk-vAs1xyl-QCoUJBqIDN_KLho7sKtWWdFACrOUEEea9QiVwkwJPDoUzyUED-cJACUVxkrKwRiotMkYtEwUoRrgQXj1DIdb6rlfE5QcAtVnlExrJxdkuxYJT-Q8TaJQ-BmjbajdIVBYE0VVKbrkTJGoH2CatERc7DGDqUJkWgAowehs7ToQMSXx54muwBY0SgIWC-JShoJopG5pYOI2QTNkgBqUq-OkgrS8L_fFyNyji7CvRkTdy6tsgPXys7TCbIWkzcQlRQsmM8AyilVJFMDZ15gIAeKhQp-IQ6XUbkh6kKxQ_LrYzzquA8BNMsVQCux6tQ2jnlEkHviVw8Ci1efuFbpdKxGKkfK0pwdJWqkrh19_alhfZCjMsveHGA02-7vd9J7mNK4cxue9KYtuD1WR4o0kU1LlcvvZVxF8Hhb-iwua4cDTLY0Ocon3nh1GyPO3ruBNarlsRtHnGu99B2vT0bKn55XG1a39jKotbNUik-d8w4qvvQs6p4-B03Jh7dOmFcz991e93VvR87g--v9zqbg86r_MVy_-uXvLuVf9zq7bwfrD_pbzzdf_Os93Oz__jT_tLK4OX2YPd5vrI2ePutv_oh3_jcX1vaX9_Il7v9znbeWe_trpw05hrhXHClqk-NqbZxLrJMaqkTRzyr2TUrSXnGhRV7WZw2E5E1nczDw4XsWpy4MXSmUmnGmSuacQaOFnEGnZdTxlTrXis9bcwmieQiBVcKLrkF7y4rkdBB4m4zStMocs8YM9oP8_oF0J4vx-_sH-6fM46MHh_njamHDxbTGWOynSxeoIj_AsWn-Mg
link.rule.ids 315,782,786,866,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%BE%B9%E7%BC%98%E8%AE%A1%E7%AE%97%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%9C%89%E9%99%90%E4%BF%A1%E6%81%AF%E9%85%8D%E7%94%B5%E7%BD%91%E5%8D%95%E7%9B%B8%E6%8E%A5%E5%9C%B0%E6%95%85%E9%9A%9C%E5%8C%BA%E6%AE%B5%E5%AE%9A%E4%BD%8D&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%BC%A0%E5%A4%A7%E6%B3%A2&rft.au=%E6%9D%8E%E9%9B%AA%E5%A9%B7&rft.au=%E9%99%B6%E7%BB%B4%E9%9D%92&rft.date=2023-12-16&rft.pub=%E6%96%B0%E8%83%BD%E6%BA%90%E5%88%A9%E7%94%A8%E4%B8%8E%E8%8A%82%E8%83%BD%E5%AE%89%E5%BE%BD%E7%9C%81%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%28%E5%90%88%E8%82%A5%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%29%2C%E5%AE%89%E5%BE%BD+%E5%90%88%E8%82%A5+230009%25%E5%9B%BD%E7%BD%91%E5%B1%B1%E4%B8%9C%E7%9C%81%E7%94%B5%E5%8A%9B%E5%85%AC%E5%8F%B8%E6%B5%8E%E5%AE%81%E4%BE%9B%E7%94%B5%E5%85%AC%E5%8F%B8%2C%E5%B1%B1%E4%B8%9C+%E6%B5%8E%E5%AE%81+272000&rft.issn=1674-3415&rft.volume=51&rft.issue=24&rft.spage=22&rft.epage=32&rft_id=info:doi/10.19783%2Fj.cnki.pspc.230483&rft.externalDocID=jdq202324003
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg