The 1H and 13C NMR chemical shifts of Strychnos alkaloids revisited at the DFT level

The density functional theory calculation of 1H and 13C NMR chemical shifts in a series of ten 10 classically known Strychnos alkaloids with a strychnine skeleton was performed at the PBE0/pcSseg‐2//pcseg‐2 level. It was found that calculated 1H and 13C NMR chemical shifts provided a markedly good c...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in chemistry Vol. 58; no. 6; pp. 532 - 539
Main Authors: Semenov, Valentin A., Samultsev, Dmitry O., Krivdin, Leonid B.
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 01-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The density functional theory calculation of 1H and 13C NMR chemical shifts in a series of ten 10 classically known Strychnos alkaloids with a strychnine skeleton was performed at the PBE0/pcSseg‐2//pcseg‐2 level. It was found that calculated 1H and 13C NMR chemical shifts provided a markedly good correlation with experiment characterized by a mean absolute error of 0.08 ppm in the range of 7 ppm for protons and 1.67 ppm in the range of 150 ppm for carbons, so that a mean absolute percentage error was as small as ~1% in both cases. The DFT calculation of 1H and 13C NMR chemical shifts in a series of 10 classically known Strychnos alkaloids with a strychnine carbon skeleton was performed at the PBE0/pcSseg‐2//pcseg‐2 level. It was found that calculated 1H and 13C NMR chemical shifts provided a markedly good correlation with experiment characterized by a mean absolute error of 0.08 ppm in the range of 7 ppm for protons and 1.67 ppm in the range of 150 ppm for carbons.
AbstractList The density functional theory calculation of 1H and 13C NMR chemical shifts in a series of ten 10 classically known Strychnos alkaloids with a strychnine skeleton was performed at the PBE0/pcSseg‐2//pcseg‐2 level. It was found that calculated 1H and 13C NMR chemical shifts provided a markedly good correlation with experiment characterized by a mean absolute error of 0.08 ppm in the range of 7 ppm for protons and 1.67 ppm in the range of 150 ppm for carbons, so that a mean absolute percentage error was as small as ~1% in both cases.
The density functional theory calculation of 1H and 13C NMR chemical shifts in a series of ten 10 classically known Strychnos alkaloids with a strychnine skeleton was performed at the PBE0/pcSseg‐2//pcseg‐2 level. It was found that calculated 1H and 13C NMR chemical shifts provided a markedly good correlation with experiment characterized by a mean absolute error of 0.08 ppm in the range of 7 ppm for protons and 1.67 ppm in the range of 150 ppm for carbons, so that a mean absolute percentage error was as small as ~1% in both cases. The DFT calculation of 1H and 13C NMR chemical shifts in a series of 10 classically known Strychnos alkaloids with a strychnine carbon skeleton was performed at the PBE0/pcSseg‐2//pcseg‐2 level. It was found that calculated 1H and 13C NMR chemical shifts provided a markedly good correlation with experiment characterized by a mean absolute error of 0.08 ppm in the range of 7 ppm for protons and 1.67 ppm in the range of 150 ppm for carbons.
Author Semenov, Valentin A.
Samultsev, Dmitry O.
Krivdin, Leonid B.
Author_xml – sequence: 1
  givenname: Valentin A.
  surname: Semenov
  fullname: Semenov, Valentin A.
  organization: Siberian Branch of the Russian Academy of Sciences
– sequence: 2
  givenname: Dmitry O.
  surname: Samultsev
  fullname: Samultsev, Dmitry O.
  organization: Siberian Branch of the Russian Academy of Sciences
– sequence: 3
  givenname: Leonid B.
  orcidid: 0000-0003-2941-1084
  surname: Krivdin
  fullname: Krivdin, Leonid B.
  email: krivdin_office@irioch.irk.ru
  organization: Siberian Branch of the Russian Academy of Sciences
BookMark eNotkE9PwjAAxRuDiYgmfoQmnof9x9oezRQxAU1gB29N17VZsWzYDgzf3hE8vcN7eS_vdwtGbddaAB4wmmKEyNMumimTTFyBMUaSZ2wmvkZgjDiTGZ4JfANuU9oihKTkdAzKsrEQL6Bua4hpAT9Wa2gau_NGB5ga7_oEOwc3fTyZpu0S1OFbh87XCUZ79Mn3toa6h_1Q8zIvYbBHG-7AtdMh2ft_nYDN_LUsFtny8-29eF5m-zwXWS1zQY0QHM1qjqw02hHJueBsOGIZZsLoiiBZVaKmrsKCIGcpyR2nerDoBDxeWvex-znY1Kttd4jtMKgIlVxywnMypLJL6tcHe1L76Hc6nhRG6oxLDbjUGZdarYuz0j_cIF6k
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
– notice: 2020 John Wiley & Sons, Ltd.
DBID 7SR
7U5
8BQ
8FD
JG9
JQ2
K9.
L7M
DOI 10.1002/mrc.4948
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-458X
EndPage 539
ExternalDocumentID MRC4948
Genre article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
TWZ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
YNT
YQT
ZCG
ZY4
ZZTAW
~IA
~WT
7SR
7U5
8BQ
8FD
AAMNL
JG9
JQ2
K9.
L7M
ID FETCH-LOGICAL-p668-d9683c88705d70e9caf2977874100e4148cab209bb8d3fb1820fe326f73a8ca3
IEDL.DBID 33P
ISSN 0749-1581
IngestDate Tue Nov 19 07:01:00 EST 2024
Sat Aug 24 01:07:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p668-d9683c88705d70e9caf2977874100e4148cab209bb8d3fb1820fe326f73a8ca3
ORCID 0000-0003-2941-1084
PQID 2397972762
PQPubID 1016392
PageCount 8
ParticipantIDs proquest_journals_2397972762
wiley_primary_10_1002_mrc_4948_MRC4948
PublicationCentury 2000
PublicationDate June 2020
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationSubtitle MRC
PublicationTitle Magnetic resonance in chemistry
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1997; 119
1984; 22
1973
1985; 63
2015; 80
2012; 14
2016; 79
1996; 77
2017; 102‐103
15
1979; 68
2013; 15
2015; 81
2013; 51
2005; 105
1999; 99
2016; 85
2016; 81
1996; 213
2014; 12
1980; 69
2015; 5
2006; 12
2012
2018; 105
2018; 108
2010; 39
2015; 11
2008; 53
1999; 464
2000; 112
2005; 48
1976; 8
2012; 112
1989; 10
1978; 43
2017; 55
1999; 37
2017; 56
1997; 78
2003; 69
2019
1999; 110
2013; 82
2014; 79
2013
1977; 9
2014; 77
2008; 80
2019; 112‐113
References_xml – volume: 78
  start-page: 1396
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 9505
  year: 2014
  publication-title: Org. Biomol. Chem.
– volume: 81
  start-page: 11495
  year: 2016
  publication-title: J. Org. Chem.
– volume: 110
  start-page: 6158
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 464
  start-page: 211
  year: 1999
  publication-title: THEOCHEM
– volume: 80
  start-page: 59
  year: 2008
  publication-title: Chem
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 356
  year: 2016
  publication-title: Russ. Chem. Rev.
– volume: 79
  start-page: 3105
  year: 2016
  publication-title: J. Nat. Prod.
– volume: 112
  start-page: 543
  year: 2012
  publication-title: Chem. Rev.
– volume: 119
  start-page: 9483
  year: 1997
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 654
  year: 2013
  publication-title: Org. Lett.
– volume: 69
  start-page: 1169
  year: 2003
  publication-title: Planta Med.
– volume: 5
  start-page: 228
  year: 2015
  publication-title: Mol. Sci.
– volume: 9
  start-page: 567
  year: 1977
  publication-title: Org. Magn. Reson.
– volume: 80
  start-page: 10838
  year: 2015
  publication-title: J. Org. Chem.
– volume: 53
  start-page: 249
  year: 2008
  publication-title: NMR Spectrosc.
– start-page: 379
  year: 1973
  publication-title: Soc. Chem. Commun.
– volume: 37
  start-page: 517
  year: 1999
  publication-title: Magn. Reson. Chem.
– volume: 112
  start-page: 1839
  year: 2012
  publication-title: Chem. Rev.
– volume: 213
  start-page: 153
  year: 1996
  publication-title: Chem. Phys.
– volume: 68
  start-page: 89
  year: 1979
  publication-title: J. Pharm. Sci.
– volume: 102‐103
  start-page: 98
  year: 2017
  publication-title: NMR Spectrosc.
– volume: 9
  start-page: 333
  year: 1977
  publication-title: Org. Magn. Reson.
– volume: 56
  start-page: 493
  year: 2017
  publication-title: Magn. Reson. Chem.
– volume: 80
  start-page: 5218
  year: 2015
  publication-title: J. Org. Chem.
– volume: 105
  start-page: 54
  year: 2018
  publication-title: NMR Spectrosc.
– volume: 51
  start-page: 383
  year: 2013
  publication-title: Magn. Reson. Chem.
– volume: 105
  start-page: 2999
  year: 2005
  publication-title: R. Cammi. Chem. Rev.
– volume: 112
  start-page: 6201
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 69
  start-page: 865
  year: 1980
  publication-title: J. Pharm. Sci.
– volume: 48
  start-page: 161
  year: 2005
  publication-title: Adv. Quant. Chem.
– volume: 112‐113
  start-page: 103
  year: 2019
  publication-title: NMR Spectrosc.
– volume: 108
  start-page: 17
  year: 2018
  publication-title: NMR Spectrosc.
– volume: 81
  start-page: 485
  year: 2015
  publication-title: J. Org. Chem.
– volume: 79
  start-page: 3387
  year: 2014
  publication-title: J. Org. Chem.
– start-page: 57
  year: 2019
  publication-title: Magn. Reson. Chem.
– volume: 43
  start-page: 1099
  year: 1978
  publication-title: J. Org. Chem.
– volume: 55
  start-page: 29
  year: 2017
  publication-title: Magn. Reson. Chem.
– year: 2012
– volume: 63
  start-page: 483
  year: 1985
  publication-title: Can. J. Chem.
– volume: 53
  start-page: 1
  year: 2008
  publication-title: NMR Spectrosc
– volume: 14
  start-page: 5098
  year: 2012
  publication-title: Org. Lett
– volume: 8
  start-page: 389
  year: 1976
  publication-title: Org. Magn. Reson.
– volume: 99
  start-page: 293
  year: 1999
  publication-title: Chem. Rev.
– volume: 82
  start-page: 99
  year: 2013
  publication-title: Russ. Chem. Rev.
– volume: 39
  start-page: 578
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 198
  year: 1976
  publication-title: Org. Magn. Reson.
– volume: 11
  start-page: 132
  year: 2015
  publication-title: Theory Comp.
– volume: 15
  start-page: 654
  publication-title: Org. Lett.
– volume: 77
  start-page: 1942
  year: 2014
  publication-title: J. Nat. Prod.
– volume: 12
  start-page: 5514
  year: 2006
  publication-title: Chem. – Eur. J.
– volume: 10
  start-page: 648
  year: 1989
  publication-title: J. Comput. Chem.
– volume: 22
  start-page: 345
  year: 1984
  publication-title: Org. Magn. Reson.
– year: 2013
SSID ssj0009973
Score 2.293329
Snippet The density functional theory calculation of 1H and 13C NMR chemical shifts in a series of ten 10 classically known Strychnos alkaloids with a strychnine...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 532
SubjectTerms 1H and 13C NMR
Alkaloids
Density functional theory
DFT
Mathematical analysis
NMR
Nuclear magnetic resonance
Strychnine
Strychnos alkaloids
Title The 1H and 13C NMR chemical shifts of Strychnos alkaloids revisited at the DFT level
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrc.4948
https://www.proquest.com/docview/2397972762
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMct6AILb0ShIA-ILdSx3TzYUGjVpRVqO7BF55eoKGnVtN8f20kobEhMGWJL0enu_L-L_TNC99po4ARoAERHAQdpgsRvcuTG2AW2R1XVupjG47fkpe8wOU_NWZiKD_HdcHOR4fO1C3AQZXcHDf1cy0fHNrHp1xYJ_vQGe93xdtO4JnCmQdhLwoY7S2i3mfhLU_5Upn5pGRz_56NO0FEtKPFz5QGnaE8XZ-gga-5xO0cz6wk4HGIoFA5ZhsejCZY1JgCX73OzKfHS4Kkd7LrsJYbFByyWc1XitT96bjUphg22ShG_DGZ44bYZXaDpoD_LhkF9l0KwiqIksBZPmLQJhfRUTHQqwVCr_BKrJwjR3NZEEgQlqRCJYkY4qrvRVtmZmIF9xS5Rq1gW-gphiNJUxzELpQDOlBIQaU04RJKDUBzaqNNYNa_Docyp-3tolVJE2-jB2y9fVTCNvMIm09xaLneWy0eTzD2v_zrwBh1SVwP7zkgHtTbrrb5F-6Xa3nmX-AKBnbgW
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTwIxEMcbwQNefBvx2YPxttJtyz7iySwQjEAMcPC2me0jEnEhLHx_232I3kw89bBtspnMtP9OO78idKe0Ak6AOkCU53AQ2gnyS45ca7PAtqksUhcTf_QWdLoWk_NY1cIUfIjvhJuNjHy-tgFuE9KtLTX0cyUeLNykhna5Z_zQ1m-w1y1xN_RLBmfouO3ArcizhLaqkb9U5U9tmi8uvYN__dYh2i81JX4qnOAI7aj0GDWi6im3EzQ1zoDdPoZUYpdFeDQcY1GSAnD2PtPrDC80npjONtGeYZh_wHwxkxle5dXnRpZiWGMjFnGnN8Vze9PoFE163WnUd8rnFJyl5wWOMXrAhJlTSFv6RIUCNDXiLzCSghDFzbZIQEJJmCSBZDqxYHetjLjTPgPziZ2herpI1TnC4IWh8n3migQ4kzIBTynCwRMcEsmhia4qs8ZlRGQxtQeIRix5tInucwPGy4KnERfkZBoby8XWcvFwHNn24q8db1GjPx0O4sHz6OUS7VG7Jc4TJVeovl5t1DWqZXJzk_vHF0AFvD4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NT8IwGMYbxUS9-G1EUXsw3iZdW_bhzQwWjEIIcPC2vOtHJCIQBv-_7T5EbyaedlibLE_et336rv0VoTulFXAC1AGiPIeD0E6Qb3LkWpsJtkVlUboY-f23oN2xmJzH6ixMwYf4LrjZzMjHa5vgC6mbG2jo51I8WLbJNtrhxoVbbj5jgw1wN_RLBGfouK3ArcCzhDarnr9M5U9rms8t8eF_vuoIHZSOEj8VIXCMttTsBO1F1UVup2hsQgG7XQwziV0W4X5viEXJCcDZ-0SvMjzXeGQa2zJ7hmH6AdP5RGZ4mZ89N6YUwwobq4jb8RhP7T6jMzSKO-Oo65SXKTgLzwscI3nAhBlRSEv6RIUCNDXWLzCGghDFzaJIQEpJmKaBZDq1WHetjLXTPgPzip2j2mw-UxcIgxeGyveZK1LgTMoUPKUIB09wSCWHOmpUqiZlPmQJtb8PjVXyaB3d5_oli4KmkRTcZJoY5RKrXNIbRvZ5-deGt2h30I6T1-f-yxXap3Y9nFdJGqi2Wq7VNdrO5Pomj44vLkC65A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+1H+and+13C+NMR+chemical+shifts+of+Strychnos+alkaloids+revisited+at+the+DFT+level&rft.jtitle=Magnetic+resonance+in+chemistry&rft.au=Semenov%2C+Valentin+A.&rft.au=Samultsev%2C+Dmitry+O.&rft.au=Krivdin%2C+Leonid+B.&rft.date=2020-06-01&rft.issn=0749-1581&rft.eissn=1097-458X&rft.volume=58&rft.issue=6&rft.spage=532&rft.epage=539&rft_id=info:doi/10.1002%2Fmrc.4948&rft.externalDBID=10.1002%252Fmrc.4948&rft.externalDocID=MRC4948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-1581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-1581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-1581&client=summon