Magnetic Skyrmions and Skyrmion Clusters in the Helical Phase of Cu_{2}OSeO_{3}
Skyrmions are nanometric spin whirls that can be stabilized in magnets lacking inversion symmetry. The properties of isolated Skyrmions embedded in a ferromagnetic background have been intensively studied. We show that single Skyrmions and clusters of Skyrmions can also form in the helical phase and...
Saved in:
Published in: | Physical review letters Vol. 119; no. 13; p. 137201 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
29-09-2017
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Skyrmions are nanometric spin whirls that can be stabilized in magnets lacking inversion symmetry. The properties of isolated Skyrmions embedded in a ferromagnetic background have been intensively studied. We show that single Skyrmions and clusters of Skyrmions can also form in the helical phase and investigate theoretically their energetics and dynamics. The helical background provides natural one-dimensional channels along which a Skyrmion can move rapidly. In contrast to Skyrmions in ferromagnets, the Skyrmion-Skyrmion interaction has a strong attractive component and thus Skyrmions tend to form clusters with characteristic shapes. These clusters are directly observed in transmission electron microscopy measurements in thin films of Cu_{2}OSeO_{3}. Topological quantization, high mobility, and the confinement of Skyrmions in channels provided by the helical background may be useful for future spintronics devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.119.137201 |