Exploitation of prokaryotic expression systems based on the salicylate-dependent control circuit encompassing nahR/P(sal)::xylS2 for biotechnological applications
Expression vectors appear to be an indispensable tool for both biological studies and biotechnological applications. Controlling gene overexpression becomes a critical issue when protein production is desired. In addition to several aspects regarding toxicity or plasmid instability, tight control of...
Saved in:
Published in: | Bioengineered bugs Vol. 1; no. 4; pp. 244 - 251 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-07-2010
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Expression vectors appear to be an indispensable tool for both biological studies and biotechnological applications. Controlling gene overexpression becomes a critical issue when protein production is desired. In addition to several aspects regarding toxicity or plasmid instability, tight control of gene expression is an essential factor in biotechnological processes. Thus, the search for better-controlled circuits is an important issue among biotechnologists. Traditionally, expression systems involve a single regulatory protein operating over a target promoter. However, these circuits are limited on their induction ratios (e.g., by their restriction in the maximal expression capacity, by their leakiness under non-induced conditions). Due to these limitations, regulatory cascades, which are far more efficient, are necessary for biotechnological applications. Thus, regulatory circuits with two modules operating in cascade offer a significant advantage. In this review, we describe the regulatory cascade based on two salicylate-responsive transcriptional regulators of Pseudomonas putida (nahR/P(sal)::xylS2), its properties, and contribution to a tighter control over heterologous gene expression in different applications.Nowadays, heterologous expression has been proven to be an indispensable tool for tackling basic biological questions, as well as for developing biotechnological applications. As the nature of the protein of interest becomes more complex, biotechnologists find that a tight control of gene expression is a key factor which conditions the success of the downstream purification process, as well as the interpretation of the results in other type of studies. Fortunately, different expression systems can be found in the market, each of them with their own pros and cons. In this review we discuss the exploitation of prokaryotic expression systems based on a promising expression system, the salicylate-dependent control circuit encompassing nahR/P(sal)::xylS2, as well as some of the improvements that have been done on this system to exploit it more efficiently in the context of both biotechnological applications and basic research. |
---|---|
AbstractList | Expression vectors appear to be an indispensable tool for both biological studies and biotechnological applications. Controlling gene overexpression becomes a critical issue when protein production is desired. In addition to several aspects regarding toxicity or plasmid instability, tight control of gene expression is an essential factor in biotechnological processes. Thus, the search for better-controlled circuits is an important issue among biotechnologists. Traditionally, expression systems involve a single regulatory protein operating over a target promoter. However, these circuits are limited on their induction ratios (e.g., by their restriction in the maximal expression capacity, by their leakiness under non-induced conditions). Due to these limitations, regulatory cascades, which are far more efficient, are necessary for biotechnological applications. Thus, regulatory circuits with two modules operating in cascade offer a significant advantage. In this review, we describe the regulatory cascade based on two salicylate-responsive transcriptional regulators of Pseudomonas putida (nahR/P(sal)::xylS2), its properties, and contribution to a tighter control over heterologous gene expression in different applications.Nowadays, heterologous expression has been proven to be an indispensable tool for tackling basic biological questions, as well as for developing biotechnological applications. As the nature of the protein of interest becomes more complex, biotechnologists find that a tight control of gene expression is a key factor which conditions the success of the downstream purification process, as well as the interpretation of the results in other type of studies. Fortunately, different expression systems can be found in the market, each of them with their own pros and cons. In this review we discuss the exploitation of prokaryotic expression systems based on a promising expression system, the salicylate-dependent control circuit encompassing nahR/P(sal)::xylS2, as well as some of the improvements that have been done on this system to exploit it more efficiently in the context of both biotechnological applications and basic research. |
Author | Royo, Jose L Guzman, Carlos A Becker, Pablo D |
Author_xml | – sequence: 1 givenname: Pablo D surname: Becker fullname: Becker, Pablo D organization: Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany – sequence: 2 givenname: Jose L surname: Royo fullname: Royo, Jose L – sequence: 3 givenname: Carlos A surname: Guzman fullname: Guzman, Carlos A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21327056$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kE1LxDAQhoMofu7Vo-SmHromaZpuvIn4BYKie1-SdLobTZPYpLD7d_yl1q-5DMy88zA8B2jbBw8IHVMy5VTQC62H5ZRO-ZRSxusttE8llwUlTOyhSUpvZCzOhaxmu2iP0ZLVpBL76PNmHV2wWWUbPA4tjn14V_0mZGswrGMPKX1v0iZl6BLWKkGDx0FeAU7KWbNxKkPRQATfgM_YBJ_74LCxvRlsxuBN6KIaMX6JvVq9XDyfjYfnl5frjXtluA091jZkMCsfXFhaoxxWMY7on6fSEdpplUsw-euHaH57M7--Lx6f7h6urx6LWFWi0IyRWnAhJDey4kobTmtCa9bMSFXyklZVzYnm5YwyKXQrWjCtqinVUjBmyvIQnf5iRwMfA6S86Gwy4JzyEIa0mNWESVYyOSZP_pKD7qBZxN52o7LFv9XyC4OYfWo |
ContentType | Journal Article |
Copyright | 2010 Landes Bioscience |
Copyright_xml | – notice: 2010 Landes Bioscience |
DBID | CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.4161/bbug.1.4.11247 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health |
EISSN | 1949-1026 |
EndPage | 251 |
ExternalDocumentID | 21327056 |
Genre | Journal Article Review |
GroupedDBID | --- 0YH 4P2 53G ADBBV ADCVX AIJEM ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CGR CUY CVF DGEBU DIK EBS ECM EIF EJD EMOBN F5P H13 M4Z NPM OK1 OVD SV3 TDBHL TEORI TFL TFW TTHFI 7X8 |
ID | FETCH-LOGICAL-p556-b2207646694c954abc4170172d805343155740b4381296bf6fecfa711b9622c33 |
IngestDate | Fri Oct 25 04:07:21 EDT 2024 Sat Sep 28 07:51:15 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 4 |
Keywords | Salmonella control circuit salicylate expression system cascade tumor |
Language | English |
License | 2010 Landes Bioscience |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p556-b2207646694c954abc4170172d805343155740b4381296bf6fecfa711b9622c33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 21327056 |
PQID | 870292329 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_870292329 pubmed_primary_21327056 |
PublicationCentury | 2000 |
PublicationDate | 2010 Jul-Aug 20100701 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010 Jul-Aug |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Bioengineered bugs |
PublicationTitleAlternate | Bioeng Bugs |
PublicationYear | 2010 |
References | 9020104 - J Biol Chem. 1997 Feb 14;272(7):3986-92 12965276 - Lancet Oncol. 2003 Sep;4(9):548-56 15664075 - J Biotechnol. 2005 Mar 16;116(2):113-24 2830990 - Cell. 1988 Mar 11;52(5):713-22 9882646 - J Bacteriol. 1999 Jan;181(2):359-67 18296514 - J Bacteriol. 2008 May;190(9):3118-28 8078436 - Microbiol Rev. 1994 Jun;58(2):268-90 9680198 - Mol Microbiol. 1998 Jun;28(6):1059-66 11934312 - Biotechnol Prog. 2002 Mar-Apr;18(2):394-400 18479936 - Protein Expr Purif. 2008 Aug;60(2):151-6 12213655 - Biochim Biophys Acta. 2002 Sep 13;1577(2):240-50 3022293 - Proc Natl Acad Sci U S A. 1986 Nov;83(22):8467-71 17922017 - Nat Methods. 2007 Nov;4(11):937-42 7044891 - Gene. 1981 Dec;16(1-3):275-86 9377566 - Cancer Res. 1997 Oct 15;57(20):4537-44 8387228 - Science. 1993 May 7;260(5109):805-7 12324354 - Appl Environ Microbiol. 2002 Oct;68(10):5034-41 10322161 - Curr Opin Microbiol. 1999 Apr;2(2):135-41 12730162 - J Bacteriol. 2003 May;185(10):3036-41 18005985 - J Mol Biol. 2008 Jan 4;375(1):59-69 10508629 - Curr Opin Biotechnol. 1999 Oct;10(5):411-21 10935724 - Metab Eng. 2000 Apr;2(2):79-91 9281494 - Plasmid. 1997;38(1):35-51 6096122 - EMBO J. 1984 Nov;3(11):2461-6 10935725 - Metab Eng. 2000 Apr;2(2):92-103 11160899 - Nucleic Acids Res. 2001 Feb 1;29(3):759-66 9409145 - Microbiol Mol Biol Rev. 1997 Dec;61(4):393-410 10511704 - Trends Biotechnol. 1999 Nov;17(11):452-60 8257110 - Annu Rev Microbiol. 1993;47:597-626 8344523 - Gene. 1993 Aug 16;130(1):15-22 3288442 - Crit Rev Microbiol. 1988;15(3):247-68 16260471 - Nucleic Acids Res. 2005;33(19):e169 11700051 - J Mol Biol. 2001 Nov 9;313(5):941-54 8195070 - J Bacteriol. 1994 Jun;176(11):3171-6 11752325 - Nucleic Acids Res. 2002 Jan 1;30(1):318-21 3537305 - J Mol Biol. 1986 May 5;189(1):113-30 1798708 - Protein Eng. 1991 Oct;4(7):843-7 8169200 - J Bacteriol. 1994 May;176(9):2517-24 15851059 - Trends Genet. 2005 May;21(5):260-4 9634760 - Biotechnology (N Y). 1995 Feb;13(2):175-9 1902522 - J Mol Biol. 1991 May 5;219(1):45-59 17971779 - Nat Methods. 2007 Nov;4(11):893-4 7934920 - Mol Microbiol. 1993 Sep;9(5):923-9 11916451 - Biotechnol Appl Biochem. 2002 Apr;35(Pt 2):91-105 9092630 - Nucleic Acids Res. 1997 Mar 15;25(6):1203-10 8840785 - Microbiol Rev. 1996 Sep;60(3):512-38 1899486 - Sci Am. 1991 Jan;264(1):84-90 9642176 - J Bacteriol. 1998 Jul;180(13):3265-75 |
References_xml | |
SSID | ssj0000446958 |
Score | 1.4734806 |
SecondaryResourceType | review_article |
Snippet | Expression vectors appear to be an indispensable tool for both biological studies and biotechnological applications. Controlling gene overexpression becomes a... |
SourceID | proquest pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 244 |
SubjectTerms | Bacterial Proteins - genetics Bacterial Proteins - metabolism Biotechnology - methods Microscopy, Fluorescence Models, Biological Prokaryotic Cells - metabolism Pseudomonas putida - genetics Pseudomonas putida - metabolism Salicylates - metabolism Salmonella - genetics Salmonella - metabolism Transcription Factors - genetics Transcription Factors - metabolism |
Title | Exploitation of prokaryotic expression systems based on the salicylate-dependent control circuit encompassing nahR/P(sal)::xylS2 for biotechnological applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21327056 https://search.proquest.com/docview/870292329 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZp97JRxtbd2l3Qwx42gttYliyrb6NL17HShdaDvhnJFxYWrGLH0Ozn7JfuyJIdp2xsexgEEwQWts_HuZ9PCL1OGVNcZcyLCkY8yqXyZAaBK4smMgQXOMonZt759JKfX0Xvp3Q6GnUHMq3X_qukYQ1kbSZn_0Ha_aawAP9B5nAFqcP1r-TeNtU54u22nbnS32S10oaYNb9xba-lY3Cux8aKZa5iMK6lIQlegPvpdYfjLvtm9nRepc18OTbMl6BD6jbJUMqvF_CsM_BTa3N0gIDHhN_NanFJbCfoXC-77L0lJhhUzDcqynOdO25E4xQ3g_x93rV-zKRa6HWP8oVe6a6KMe6T2B-a7y6reyyrha5dttZlNkxRnneZjdxqY0EF2Ak7Ut-r6wEq6VD1Wh5JZ8WJpbG9bSBMOAdfRcFbHPgH1AxQWcLPTSbu88_JyZezsySeXsVb6A4BJdaG6x8_9fk7UwgXLLI8oGbbw81Nfx-xtJ5L_ADddyEHfmex8hCN8nIX3RsQUe6iHZu9xXYo7RH6MUQR1gUeoAivUYQdinCLIgwLgCL8KxRhhyLsUISHKMIGRYezN3Dj26OjFjsYsINvYwcPsfMYxSfT-PjUc6d5eNeMhZ4iZMJDGoaCpoJRqVJqjgLgJIvADoAbyxinE2UY54gIVREWeVpI7vtKhISkQfAEbZe6zJ8hLH0eSBoWQnJJRaFkwf0sZYYakWdBGu0h3H36BJSlqYDJMtdNnYBxIhDRELGHnlqRJNeW1CUhfkA4RAP7f775Obq7husLtL2smvwl2qqz5lWLkZ9JQpon |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploitation+of+prokaryotic+expression+systems+based+on+the+salicylate-dependent+control+circuit+encompassing+nahR%2FP%28sal%29%3A%3AxylS2+for+biotechnological+applications&rft.jtitle=Bioengineered+bugs&rft.au=Becker%2C+Pablo+D&rft.au=Royo%2C+Jose+L&rft.au=Guzman%2C+Carlos+A&rft.date=2010-07-01&rft.eissn=1949-1026&rft.volume=1&rft.issue=4&rft.spage=244&rft.epage=251&rft_id=info:doi/10.4161%2Fbbug.1.4.11247&rft.externalDBID=NO_FULL_TEXT |