Interleukin-12 (IL-12)-driven alloimmune responses in vitro and in vivo: requirement for beta1 subunit of the IL-12 receptor
Interleukin-12 (IL-12) mediates its biologic activities via binding high-affinity receptors on T and natural killer cells. Although emphasis has been placed on the requirement for IL-12Rbeta2 in IL-12 bioactivity, the role of IL-12Rbeta1 is less well defined. The current study evaluated the effects...
Saved in:
Published in: | Transplantation Vol. 67; no. 11; pp. 1453 - 1460 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
15-06-1999
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interleukin-12 (IL-12) mediates its biologic activities via binding high-affinity receptors on T and natural killer cells. Although emphasis has been placed on the requirement for IL-12Rbeta2 in IL-12 bioactivity, the role of IL-12Rbeta1 is less well defined. The current study evaluated the effects of exogenous IL-12 on alloantigen-specific immune responses and determined the requirement for IL-12Rbeta1 in IL-12-mediated alloimmunity.
The mouse heterotopic cardiac transplant model was employed to evaluate the effects of IL-12 on alloantigen-specific immune responses in vivo. In addition, IFN-gamma production in mixed lymphocyte cultures (MLC) supplemented with IL-12 was measured to assess the effects of IL-12 on Th1 function in vitro. Mice deficient in IL-12Rbeta1 (IL-12Rbeta1-/-) were used to determine the requirement for this receptor component in IL-12-driven alloimmune responses.
Addition of IL-12 to MLC consisting of wild-type splenocytes enhanced alloantigen-specific proliferative responses and Th1 development. In contrast, IL-12 did not alter these in vitro immune parameters in IL-12Rbeta1-/- MLC. Treatment of wild-type cardiac allograft recipients with IL-12 resulted in high concentrations of serum interferon-gamma (IFN-gamma) and a 10-fold increase in IFN-gamma production by recipient splenocytes after restimulation in vitro. However, this fulminate Th1 response did not accelerate allograft rejection. Importantly, IL-12 had no effect on serum IFN-gamma or in vivo priming of Thl in IL-12Rbeta1-/- recipients. Finally, administration of IL-12 to WT allograft recipients resulted in a bimodal alloantibody response: antibody production was suppressed at high doses of IL-12, and enhanced at lower doses.
IL-12 markedly enhances alloantigen-specific immune function; however, these exaggerated Th1-driven responses do not culminate in accelerated allograft rejection. Further, these data indicate that IL-12Rbeta1 is essential for the enhancement of both in vitro and in vivo alloimmune responses by exogenous IL-12. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0041-1337 |