Mini-organ cultures of human nasal mucosa. A model for eco-genotoxicological investigations
Volatile and ingestive xenobiotics may induce cancer in the mucosa of the upper aerodigestive tract. A new model is presented combining mini-organ cultures of human mucosa and the Comet assay that allows investigation of tumor initiation steps in vitro. Specimens of human mucosa of the inferior nasa...
Saved in:
Published in: | HNO Vol. 53; no. 12; p. 1037 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | German |
Published: |
Germany
01-12-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Volatile and ingestive xenobiotics may induce cancer in the mucosa of the upper aerodigestive tract. A new model is presented combining mini-organ cultures of human mucosa and the Comet assay that allows investigation of tumor initiation steps in vitro.
Specimens of human mucosa of the inferior nasal turbinates were cultured as mini-organs and exposed to xenobiotics once, twice or three times with consecutive repair intervals. The cultures were monitored for structural integrity (inverse microscopy, histology), DNA fragmentation and repair activity (Comet assay), induction of apoptosis (annexin V assay), and production of IL-8 and GM-CSF (ELISA).
Mini-organ cultures showed a good structural integrity during the whole culture period. Exposure to N-nitrosodiethylamine (NDEA) and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) induced significant DNA fragmentation. Sodium dichromate (Na2Cr2O7) had an additive DNA fragmentation effect with repetitive exposure. Significant DNA repair was seen after strand break induction by Na2Cr2O7, only. Apoptosis was seen after three exposures to BPDE und Na2Cr2O7, but not NDEA. Inflammatory cytokine release was unaltered by NDEA. However, BPDE and Na2Cr2O7 reduced GM-CSF and Na2Cr2O7 reduced IL-8 excretion.
This three dimensional mini-organ culture system proved to be very helpful in characterizing volatile and ingestive xenobiotics potentially hazardous to humans. Beside the information concerning genotoxicity, it allows cytological and immunological studies. In contrast to investigations with fresh specimens, repetitive or chronic exposure to xenobiotics is possible in mucosal cells with their epithelial structural integrity. Therefore, mini-organ cultures of human upper aerodigestive tract epithelia represent a model closely resembling the in vivo situation. |
---|---|
ISSN: | 0017-6192 |