Determinants of human cerebral pressure–flow velocity relationships: new insights from vascular modelling and Ca2+ channel blockade
Non‐technical summary Brain function is critically dependent on the regulation of cerebral blood flow (CBF) by cerebral blood vessels. We show that a mechanical blood vessel property called compliance plays an important role in determining the way cerebral blood vessels respond to changes in blood...
Saved in:
Published in: | The Journal of physiology Vol. 589; no. 13; pp. 3263 - 3274 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-07-2011
Wiley Subscription Services, Inc Blackwell Science Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Non‐technical summary Brain function is critically dependent on the regulation of cerebral blood flow (CBF) by cerebral blood vessels. We show that a mechanical blood vessel property called compliance plays an important role in determining the way cerebral blood vessels respond to changes in blood pressure. These results enhance our knowledge of how cerebral blood vessels regulate CBF, which is critical to understanding the causes and effects of cerebrovascular diseases such as stroke and dementia.
The fundamental determinants of human dynamic cerebral autoregulation are poorly understood, particularly the role of vascular compliance and the myogenic response. We sought to 1) determine whether capacitive blood flow associated with vascular compliance and driven by the rate of change in mean arterial blood pressure (dMAP/dt) is an important determinant of middle cerebral artery velocity (MCAv) dynamics and 2) characterise the impact of myogenic blockade on these cerebral pressure–flow velocity relations in humans. We measured MCAv and mean arterial pressure (MAP) during oscillatory lower body negative pressure (n= 8) at 0.10 and 0.05 Hz before and after cerebral Ca2+ channel blockade (nimodipine). Pressure–flow velocity relationships were characterised using transfer function analysis and a regression‐based Windkessel analysis that incorporates MAP and dMAP/dt as predictors of MCAv dynamics. Results show that incorporation of dMAP/dt accounted for more MCAv variance (R2 0.80–0.99) than if only MAP was considered (R2 0.05–0.90). The capacitive gain relating dMAP/dt and MCAv was strongly correlated to transfer function gain (0.05 Hz, r= 0.93, P < 0.01; 0.10 Hz, r= 0.91, P < 0.01), but not to phase or coherence. Ca2+ channel blockade increased the conductive gain relation between MAP and MCAv (P < 0.05), and reduced phase at 0.05 Hz (P < 0.01). Capacitive and transfer function gain were unaltered. The findings suggest capacitive blood flow is an important determinant of cerebral haemodynamics that bears strong relations to some metrics of dynamic cerebral autoregulation derived from transfer function analysis, and that Ca2+ channel blockade enhances pressure‐driven resistive blood flow but does not alter capacitive blood flow. |
---|---|
AbstractList | Non‐technical summary Brain function is critically dependent on the regulation of cerebral blood flow (CBF) by cerebral blood vessels. We show that a mechanical blood vessel property called compliance plays an important role in determining the way cerebral blood vessels respond to changes in blood pressure. These results enhance our knowledge of how cerebral blood vessels regulate CBF, which is critical to understanding the causes and effects of cerebrovascular diseases such as stroke and dementia.
The fundamental determinants of human dynamic cerebral autoregulation are poorly understood, particularly the role of vascular compliance and the myogenic response. We sought to 1) determine whether capacitive blood flow associated with vascular compliance and driven by the rate of change in mean arterial blood pressure (dMAP/dt) is an important determinant of middle cerebral artery velocity (MCAv) dynamics and 2) characterise the impact of myogenic blockade on these cerebral pressure–flow velocity relations in humans. We measured MCAv and mean arterial pressure (MAP) during oscillatory lower body negative pressure (n= 8) at 0.10 and 0.05 Hz before and after cerebral Ca2+ channel blockade (nimodipine). Pressure–flow velocity relationships were characterised using transfer function analysis and a regression‐based Windkessel analysis that incorporates MAP and dMAP/dt as predictors of MCAv dynamics. Results show that incorporation of dMAP/dt accounted for more MCAv variance (R2 0.80–0.99) than if only MAP was considered (R2 0.05–0.90). The capacitive gain relating dMAP/dt and MCAv was strongly correlated to transfer function gain (0.05 Hz, r= 0.93, P < 0.01; 0.10 Hz, r= 0.91, P < 0.01), but not to phase or coherence. Ca2+ channel blockade increased the conductive gain relation between MAP and MCAv (P < 0.05), and reduced phase at 0.05 Hz (P < 0.01). Capacitive and transfer function gain were unaltered. The findings suggest capacitive blood flow is an important determinant of cerebral haemodynamics that bears strong relations to some metrics of dynamic cerebral autoregulation derived from transfer function analysis, and that Ca2+ channel blockade enhances pressure‐driven resistive blood flow but does not alter capacitive blood flow. Non-technical summary Brain function is critically dependent on the regulation of cerebral blood flow (CBF) by cerebral blood vessels. We show that a mechanical blood vessel property called compliance plays an important role in determining the way cerebral blood vessels respond to changes in blood pressure. These results enhance our knowledge of how cerebral blood vessels regulate CBF, which is critical to understanding the causes and effects of cerebrovascular diseases such as stroke and dementia. Abstract The fundamental determinants of human dynamic cerebral autoregulation are poorly understood, particularly the role of vascular compliance and the myogenic response. We sought to 1) determine whether capacitive blood flow associated with vascular compliance and driven by the rate of change in mean arterial blood pressure (dMAP/dt) is an important determinant of middle cerebral artery velocity (MCAv) dynamics and 2) characterise the impact of myogenic blockade on these cerebral pressure-flow velocity relations in humans. We measured MCAv and mean arterial pressure (MAP) during oscillatory lower body negative pressure (n= 8) at 0.10 and 0.05 Hz before and after cerebral Ca2+ channel blockade (nimodipine). Pressure-flow velocity relationships were characterised using transfer function analysis and a regression-based Windkessel analysis that incorporates MAP and dMAP/dt as predictors of MCAv dynamics. Results show that incorporation of dMAP/dt accounted for more MCAv variance (R2 0.80-0.99) than if only MAP was considered (R2 0.05-0.90). The capacitive gain relating dMAP/dt and MCAv was strongly correlated to transfer function gain (0.05 Hz, r= 0.93, P < 0.01; 0.10 Hz, r= 0.91, P < 0.01), but not to phase or coherence. Ca2+ channel blockade increased the conductive gain relation between MAP and MCAv (P < 0.05), and reduced phase at 0.05 Hz (P < 0.01). Capacitive and transfer function gain were unaltered. The findings suggest capacitive blood flow is an important determinant of cerebral haemodynamics that bears strong relations to some metrics of dynamic cerebral autoregulation derived from transfer function analysis, and that Ca2+ channel blockade enhances pressure-driven resistive blood flow but does not alter capacitive blood flow. The fundamental determinants of human dynamic cerebral autoregulation are poorly understood, particularly the role of vascular compliance and the myogenic response. We sought to 1) determine whether capacitive blood flow associated with vascular compliance and driven by the rate of change in mean arterial blood pressure (dMAP/dt) is an important determinant of middle cerebral artery velocity (MCAv) dynamics and 2) characterise the impact of myogenic blockade on these cerebral pressure-flow velocity relations in humans. We measured MCAv and mean arterial pressure (MAP) during oscillatory lower body negative pressure (n =8) at 0.10 and 0.05 Hz before and after cerebral Ca²⁺ channel blockade (nimodipine). Pressure-flow velocity relationships were characterised using transfer function analysis and a regression-based Windkessel analysis that incorporates MAP and dMAP/dt as predictors of MCAv dynamics. Results show that incorporation of dMAP/dt accounted for more MCAv variance (R² 0.80-0.99) than if only MAP was considered (R2 0.05-0.90). The capacitive gain relating dMAP/dt and MCAv was strongly correlated to transfer function gain (0.05 Hz, r =0.93, P<0.01; 0.10 Hz, r =0.91, P<0.01), but not to phase or coherence. Ca²⁺ channel blockade increased the conductive gain relation between MAP and MCAv (P<0.05), and reduced phase at 0.05 Hz (P<0.01). Capacitive and transfer function gain were unaltered. The findings suggest capacitive blood flow is an important determinant of cerebral haemodynamics that bears strong relations to some metrics of dynamic cerebral autoregulation derived from transfer function analysis, and that Ca²⁺ channel blockade enhances pressure-driven resistive blood flow but does not alter capacitive blood flow. the causes and effects of cerebrovascular diseases such as stroke and dementia. |
Author | Tzeng, Yu‐Chieh Chan, Gregory S. H. Willie, Christopher K. Ainslie, Philip N. |
Author_xml | – sequence: 1 givenname: Yu‐Chieh surname: Tzeng fullname: Tzeng, Yu‐Chieh – sequence: 2 givenname: Gregory S. H. surname: Chan fullname: Chan, Gregory S. H. – sequence: 3 givenname: Christopher K. surname: Willie fullname: Willie, Christopher K. – sequence: 4 givenname: Philip N. surname: Ainslie fullname: Ainslie, Philip N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21540346$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhi1URKeFN0DIEguQ0BQ7ju2YBRIa7qoEi7K2nORk4sGxg53MaHZseALekCfBo2krYMHGXpxPn87lP0MnPnhA6CElF5RS9nwz9vtkg7soCKX5EYqzO2hBS6GWUip2ghaEFMWSSU5P0VlKG0IoI0rdQ6cF5SVhpVigH69hgjhYb_yUcOhwPw_G4wYi1NE4PEZIaY7w6_vPzoUd3oILjZ32OIIzkw0-9XZML7CHHbY-2XWfNV0MA96a1MzORDyEFpyzfo2Nb_HKFM9w0xvvweE6y76aFu6ju51xCR5c_-foy9s3V6v3y8tP7z6sXl0uR8aLaimpqVVJaqEIF7Tu2kaqitW0EDVXAKZpC84ElVVVF6JrJbCmAl6XnWqF6ETDztHLo3ec6wHaBvyUh9RjtIOJex2M1X9XvO31Omw1oyVXrMqCJ9eCGL7NkCY92NTk8YyHMCddSU6qUkiWyaf_JSmhUvGylDyjj_9BN2GOPi9C5ztxVighDsJHf_Z-2_TNLTOgjsDOOtjf1inRh7zom7zoQ170MS_66uPnkvOK_QaY9bsI |
CODEN | JPHYA7 |
ContentType | Journal Article |
Copyright | 2011 The Authors. Journal compilation © 2011 The Physiological Society Journal compilation © 2011 The Physiological Society 2011 |
Copyright_xml | – notice: 2011 The Authors. Journal compilation © 2011 The Physiological Society – notice: Journal compilation © 2011 The Physiological Society 2011 |
DBID | CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/jphysiol.2011.206953 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database Calcium & Calcified Tissue Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 3274 |
ExternalDocumentID | 3374277811 21540346 TJP4558 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3EH 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AANLZ AAONW AASGY AAXRX AAYJJ AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FA8 FIJ FUBAC G-S G.N GODZA GX1 H.X H13 HF~ HGLYW HZI HZ~ H~9 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SAMSI SUPJJ TEORI TLM TN5 TR2 UB1 UKR UPT V8K VH1 W8F W8V W99 WBKPD WH7 WHG WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 XOL YBU YHG YKV YQT YSK YXB YYP YZZ ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD AAMNL FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-p3528-71ab940b690561bfdc7983b126b59eeacd25361788b26fd7e3c8e5b4f9d66f6c3 |
IEDL.DBID | RPM |
ISSN | 0022-3751 |
IngestDate | Tue Sep 17 21:10:16 EDT 2024 Fri Oct 25 02:01:11 EDT 2024 Fri Oct 25 03:54:01 EDT 2024 Tue Nov 19 04:33:47 EST 2024 Sat Sep 28 08:00:46 EDT 2024 Sat Aug 24 00:53:50 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p3528-71ab940b690561bfdc7983b126b59eeacd25361788b26fd7e3c8e5b4f9d66f6c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.2011.206953 |
PMID | 21540346 |
PQID | 1545329663 |
PQPubID | 1086388 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3145938 proquest_miscellaneous_875084673 proquest_miscellaneous_1017954475 proquest_journals_1545329663 pubmed_primary_21540346 wiley_primary_10_1113_jphysiol_2011_206953_TJP4558 |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Blackwell Science Inc |
References | 1989; 20 1984b; 247 2011 2004; 25 1982; 32 2008; 36 2008; 8 2000; 90 1978; 234 2005 2009; 296 1999; 82 2010; 41 1998; 274 2003; 34 1988; 522 1998; 38 1994; 267 1983; 225 2009; 35 1990; 66 1979; 67 2005; 288 1999; 19 2007; 292 1982; 63 1984a 2010; 298 2009; 107 2004; 559 1964; 207 2009; 587 1994; 4 2005; 79 2009; 106 2001; 32 17220187 - Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2397-407 19359366 - J Physiol. 2009 Jun 1;587(Pt 11):2567-77 18855141 - Ann Biomed Eng. 2008 Dec;36(12):2028-41 15205150 - AJNR Am J Neuroradiol. 2004 Jun-Jul;25(6):1067-76 497542 - Br J Pharmacol. 1979 Nov;67(3):409P-410P 6834275 - J Pharmacol Exp Ther. 1983 Apr;225(1):24-8 10648337 - Anesth Analg. 2000 Feb;90(2):445-9 2403863 - Circ Res. 1990 Jan;66(1):8-17 20007920 - Stroke. 2010 Jan;41(1):102-9 J Physiol. 2011 Aug 15;589(Pt 16):4077 6431830 - Am J Physiol. 1984 Aug;247(2 Pt 2):H170-6 18834658 - Ultrasound Med Biol. 2009 Jan;35(1):21-9 3288065 - Ann N Y Acad Sci. 1988;522:698-706 16963612 - Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H432-8 12791944 - Stroke. 2003 Jul;34(7):1645-9 10455091 - Heart. 1999 Sep;82(3):365-72 2911822 - Stroke. 1989 Jan;20(1):1-3 11588333 - Stroke. 2001 Oct;32(10):2403-8 21724582 - J Physiol. 2011 Jul 1;589(Pt 13):3051-2 20947842 - Stroke. 2010 Nov;41(11):2512-8 18978190 - Am J Physiol Heart Circ Physiol. 2009 Jan;296(1):H65-70 14220051 - Am J Physiol. 1964 Sep;207:728-32 7201802 - Arzneimittelforschung. 1982;32(4):338-46 7102417 - Acta Neurochir (Wien). 1982;63(1-4):259-65 8067416 - Am J Physiol. 1994 Aug;267(2 Pt 2):H593-604 6532451 - Bibl Cardiol. 1984;(38):123-7 21292835 - J Appl Physiol (1985). 2011 Apr;110(4):917-25 15254153 - J Physiol. 2004 Sep 15;559(Pt 3):965-73 18974368 - J Appl Physiol (1985). 2009 Jan;106(1):153-60 15635601 - J Neurosci Res. 2005 Feb 15;79(4):421-7 15388498 - Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H504-10 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41 18041584 - Cardiovasc Eng. 2008 Mar;8(1):42-59 20228262 - Am J Physiol Heart Circ Physiol. 2010 May;298(5):H1588-99 10366199 - J Cereb Blood Flow Metab. 1999 Jun;19(6):679-89 15674871 - Cochrane Database Syst Rev. 2005;(1):CD000277 645875 - Am J Physiol. 1978 Apr;234(4):H371-83 2492126 - Stroke. 1989 Jan;20(1):45-52 19661450 - J Appl Physiol (1985). 2009 Oct;107(4):1165-71 9549658 - J Clin Pharmacol. 1998 Mar;38(3):202-12 |
References_xml | – volume: 41 start-page: 2512 year: 2010 end-page: 2518 article-title: The significance of blood pressure variability for the development of hemorrhagic transformation in acute ischemic stroke publication-title: Stroke – volume: 19 start-page: 679 year: 1999 end-page: 689 article-title: Evidence of a cerebrovascular postarteriole windkessel with delayed compliance publication-title: J Cereb Blood Flow Meta – volume: 234 start-page: H371 year: 1978 end-page: 383 article-title: Responses of cerebral arteries and arterioles to acute hypotension and hypertension publication-title: Am J Physiol Heart Circ Physiol – volume: 36 start-page: 2028 year: 2008 end-page: 2041 article-title: Biaxial response of passive human cerebral arteries publication-title: Ann Biomed Eng – volume: 587 start-page: 2567 year: 2009 end-page: 2577 article-title: Dynamic pressure‐flow relationship of the cerebral circulation during acute increase in arterial pressure publication-title: J Physiol – volume: 296 start-page: H65 year: 2009 end-page: 70 article-title: Human sinus arrhythmia: inconsistencies of a teleological hypothesis publication-title: Am J Physiol Heart Circ Physiol – volume: 90 start-page: 445 year: 2000 end-page: 449 article-title: Nimodipine premedication and induction dose of propofol publication-title: Anesth Analg – volume: 292 start-page: H432 year: 2007 end-page: 438 article-title: Frequency response characteristics of cerebral blood flow autoregulation in rats publication-title: Am J Physiol Heart Circ Physiol – volume: 274 start-page: H233 year: 1998 end-page: 241 article-title: Transfer function analysis of dynamic cerebral autoregulation in humans publication-title: Am J Physiol Heart Circ Physiol – volume: 41 start-page: 102 year: 2010 end-page: 109 article-title: Sympathetic control of the cerebral vasculature in humans publication-title: Stroke – volume: 292 start-page: H2397 year: 2007 end-page: 2407 article-title: Effects of hypercapnia and hypoxemia on respiratory sinus arrhythmia in conscious humans during spontaneous respiration publication-title: Am J Physiol Heart Circ Physiol – volume: 34 start-page: 1645 year: 2003 end-page: 1649 article-title: Dynamic pressure–flow velocity relationships in the human cerebral circulation publication-title: Stroke – year: 2011 article-title: Contribution of arterial windkessel in low frequency cerebral hemodynmaics during transient changes in blood pressure publication-title: J Appl Physiol – volume: 66 start-page: 8 year: 1990 end-page: 17 article-title: Regulation of large cerebral arteries and cerebral microvascular pressure publication-title: Circ Res – volume: 522 start-page: 698 year: 1988 end-page: 706 article-title: Pharmacology of nimodipine. A review publication-title: Ann N Y Acad Sci – volume: 79 start-page: 421 year: 2005 end-page: 427 article-title: Where is the blood‐brain barrier … really? publication-title: J Neurosci Res – volume: 106 start-page: 153 year: 2009 end-page: 160 article-title: Dynamic cerebral autoregulation during repeated squat‐stand maneuvers publication-title: J Appl Physiol – volume: 225 start-page: 24 year: 1983 end-page: 28 article-title: Effects of nimodipine on cerebral blood flow publication-title: J Pharmacol Exp Ther – volume: 4 start-page: 204 year: 1994 end-page: 210 article-title: Intravenous nimodipine west european stroke trial (INWEST) of nimodipine in the treatment of acute ischaemic stroke publication-title: Cerebrovasc Dis – start-page: CD000277 year: 2005 article-title: Calcium antagonists for aneurysmal subarachnoid haemorrhage publication-title: Cochrane Database Syst Rev – volume: 82 start-page: 365 year: 1999 end-page: 372 article-title: Autonomic control of the cerebral circulation during normal and impaired peripheral circulatory control publication-title: Heart – volume: 67 start-page: 409P year: 1979 end-page: 410P article-title: The cellular mechanism of action of nimodipine (BAY e 9736), a new calcium antagonist [proceedings] publication-title: Br J Pharmacol – volume: 38 start-page: 202 year: 1998 end-page: 212 article-title: The importance of arterial compliance in cardiovascular drug therapy publication-title: J Clin Pharmacol – volume: 267 start-page: H593 year: 1994 end-page: 604 article-title: Cardiovascular regulation in humans in response to oscillatory lower body negative pressure publication-title: Am J Physiol Heart Circ Physiol – volume: 32 start-page: 338 year: 1982 end-page: 346 article-title: The effects of nimodipine, its optical isomers and metabolites on isolated vascular smooth muscle publication-title: Arzneimittelforschung – volume: 288 start-page: H504 year: 2005 end-page: 510 article-title: Phase‐averaged characterization of respiratory sinus arrhythmia pattern publication-title: Am J Physiol Heart Circ Physiol – volume: 298 start-page: H1588 year: 2010 end-page: 1599 article-title: Influence of breathing frequency on the pattern of respiratory sinus arrhythmia and blood pressure: old questions revisited publication-title: Am J Physiol Heart Circ Physiol – volume: 32 start-page: 2403 year: 2001 end-page: 2408 article-title: Critical analysis of cerebrovascular autoregulation during repeated head‐up tilt publication-title: Stroke – volume: 35 start-page: 21 year: 2009 end-page: 29 article-title: The sit‐to‐stand technique for the measurement of dynamic cerebral autoregulation publication-title: Ultrasound Med Biol – volume: 247 start-page: H170 year: 1984b end-page: 176 article-title: Effects of nimodipine on cerebral vasoconstrictor responses publication-title: Am J Physiol Heart Circ Physiol – volume: 8 start-page: 42 year: 2008 end-page: 59 article-title: Cerebral autoregulation: from models to clinical applications publication-title: Cardiovasc Eng – volume: 20 start-page: 45 year: 1989 end-page: 52 article-title: Cerebral autoregulation dynamics in humans publication-title: Stroke – start-page: 123 year: 1984a end-page: 127 article-title: Cerebral vasodilator effects of nimodipine publication-title: Bibl Cardiol – volume: 20 start-page: 1 year: 1989 end-page: 3 article-title: Validity of cerebral arterial blood flow calculations from velocity measurements publication-title: Stroke – volume: 25 start-page: 1067 year: 2004 end-page: 1076 article-title: Intra‐arterial nimodipine for the treatment of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage: preliminary results publication-title: AJNR Am J Neuroradiol – volume: 559 start-page: 965 year: 2004 end-page: 973 article-title: Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations publication-title: J Physiol – volume: 207 start-page: 728 year: 1964 end-page: 732 article-title: Delayed compliance in external jugular vein of the dog publication-title: Am J Physiol – volume: 63 start-page: 259 year: 1982 end-page: 265 article-title: Nimodipine: a new calcium antagonistic drug with a preferential cerebrovascular action publication-title: Acta Neurochir (Wien) – volume: 107 start-page: 1165 year: 2009 end-page: 1171 article-title: Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques publication-title: J Appl Physiol |
SSID | ssj0013099 |
Score | 2.3405232 |
Snippet | Non‐technical summary Brain function is critically dependent on the regulation of cerebral blood flow (CBF) by cerebral blood vessels. We show that a... The fundamental determinants of human dynamic cerebral autoregulation are poorly understood, particularly the role of vascular compliance and the myogenic... Non-technical summary Brain function is critically dependent on the regulation of cerebral blood flow (CBF) by cerebral blood vessels. We show that a... |
SourceID | pubmedcentral proquest pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3263 |
SubjectTerms | Adult Blood Flow Velocity - drug effects Blood Flow Velocity - physiology Blood pressure Blood Pressure - drug effects Blood Pressure - physiology Blood vessels Brain Calcium Calcium Channel Blockers - pharmacology Calcium Signaling - drug effects Calcium Signaling - physiology Cardiovascular Cerebral blood flow Cerebrovascular Circulation - drug effects Cerebrovascular Circulation - physiology Cerebrovascular diseases Compliance Compliance - drug effects Compliance - physiology Dementia disorders Electrocardiography - drug effects Electrocardiography - methods Hemodynamics Humans Male Middle Cerebral Artery - drug effects Middle Cerebral Artery - physiology Models, Molecular Nimodipine Nimodipine - pharmacology Respiration - drug effects Stroke Young Adult |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell dbid: 33P link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy68yiNQ0CAhLigi8SOOj1XbVcUBrUSRuEVxbNOFJak2rFBvXPgF_EN-CTPOg1aUC-JszyiWZ5xv7JlvGHtupc2s1QXuAJepzKVLDXchDT5w5T3PhKPi5OO3-s378vCIaHIWUy3MwA8xX7iRZ8Tzmhy8tmMXkpzIBj7G0L9bDzScPCuMItJPDBhiJYdY_n5MyIyZScO1yscKOlTz6iolV2HNP1MmL0LZ-C9a3Ppfq7jNbo5oFPYH87nDrvn2LtvdbzES_3wOL2A5iHUfznfZ98MLmTPQBYjt_aDxG3p7XkPMqN1u_M9vP8K6-wqUjNQgxofNlG93usLPBsTxsGp7uhTogapbYMqGhdiWh-rjoW4dHNT8JVBhMq4RLCr7VDt_j71bHJ0cHKdjE4f0jIhjUp3X1sjMYhSOUM0G12hTCpvzwirj8dh3XAmqUywtL4LTXjSlV1YG44oiFI24z3barvUPGQQMtso644444DTKanpjRNNqrPHS6ITtTRtXjZ7YVwQRBcegTiTs2TyMPkQPI3Xru21fxWNJEfVhwuAvczCuywiroZoHgylUZwMfSIWoSWZCFgnTl4xknkAU3pdH2tVppPIWuVRGlAnj0UhmiSE0E9VkHhWZRzWYR3XyeimVKh_9i9BjdmO4FaeE4z2282Wz9U_Y9d5tn0an-QXG0iGt priority: 102 providerName: Wiley-Blackwell |
Title | Determinants of human cerebral pressure–flow velocity relationships: new insights from vascular modelling and Ca2+ channel blockade |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2011.206953 https://www.ncbi.nlm.nih.gov/pubmed/21540346 https://www.proquest.com/docview/1545329663 https://search.proquest.com/docview/1017954475 https://search.proquest.com/docview/875084673 https://pubmed.ncbi.nlm.nih.gov/PMC3145938 |
Volume | 589 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWYrtggoDwGSnWREBuUTuJHHC-raasKCTQSRWIXxbFNh2ac0YQR6o4NX8Af8iX4OsmoFbBh7Vfke-2ca597TMgrzXWqtcyDBShPeMZNoqhxibOOCmtpygwmJ59_kO8_FSenKJMjxlyYSNqv9fLIN6sjv7yM3Mr1qp6NPLHZ4t2cZVwoVswmZBKw4Riij1cHqVI7iXApsiFfLsvY7Es8LWibXrmTprkSLKoBB9jCeP43kPknV_Imho0_obP75N6AHuG4_8oH5I71D8n-sQ-R8-oaXsOiH7n9fL1PfpzcYLpA6yA-xwe13eBdcQORAbvd2F_ff7qm_QZIHqoDJofNyI-7XIbJgoC7Yek7DOI7wGwUGNmrEJ_RwXx2qLyBeUXfACYSe9uADp1dVcY-Ih_PTi_m58nw6EKyRqGXRGaVVjzVIWoO0Eo7U0tVMJ3RXAtlwzZtqGCYV1homjsjLasLKzR3yuS5y2v2mOz51tunBFwIjooqpQY122RoK_FOMLhCrZXlSk7JwTjf5bByuhIhHaMhCGNT8nJXHHweLzIqb9ttV8ZtRKBU4ZTAP-qEOCxFbBW6edJbsFz3-h3laO8pkbdsu6uAktu3S4InRuntwfOmhEYv2LXoQylWjh5WooeVvYeVF28XXIji2X8P95zc7Y-ykSV8QPa-brb2BZl0ZntIJowtDuMK-A2Y9Q2f |
link.rule.ids | 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoOcClPMojUMBIiAuKSGwnjo9VHyxQqpVYJG5WHNvtwjapNqxQb1z4BfxDfgkzzoNWlAvibHsUy98439gznwl5ZoRJjJE5rAATsUiFjRWzPvbOs8w5lnCLxcmT9_LwY7G7hzI5r4ZamE4fYjxwQ88I-zU6OB5I916OagOfQuzfLDodTpbkKuNr5KrIAZNYy8Gnv68TEqVG2XCZpX0NHdh5eZmVy9jmn0mT58ls-Bvt3_hv87hJNnpCSrc7BN0iV1x9m2xu1xCMn5zR53TaDWuOzjbJ991zyTO08TS88Ecrt8Tr5wUNSbWrpfv57YdfNF8p5iNVQPPpcki5O57Dd1Og8nRet3gu0FIscKFDQiwNL_NgiTwta0t3SvaCYm0yTJIaMPa5tO4O-bC_N9uZxP07DvEpasfEMi2NEomBQBzYmvG2kqrgJmW5yZSDnd-yjGOpYmFY7q10vCpcZoRXNs99XvG7ZL1uanefUA_xVlEmzKIMnISxEq8ZAV2VUU4oGZGtYeV074ytRpbIGcR1PCJPx2ZwI7wbKWvXrFoddqYM1Q8jQv_SB0K7BOkamLnXYUGfdpIgGoiTSLjIIyIvoGTsgCreF1vq-XFQ8-apyBQvIsICSsYRXXTG9QAPjfDQHTz07M1UZFnx4F8GPSHXJrN3B_rg9eHbh-R6d0iO-cdbZP3LcuUekbXWrh4HD_oF5vIl1Q |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZokRAXXuURKGAkxAVFJH7E8bHqdlUeqlaiSNysOLbpwpKsNqxQb1z4BfxDfgkzzia0olwQZ3tGsTzjfOOZ-UzIUytsZq0qYAeYSEUuXKqZC2nwgUnvWcYdNicfvlVH78vJAdLkTIdemJ4fYrxwQ8-I5zU6-NKFjZMj2cDHGPq3i56Gk2WFlnyLXBaAyJFDn_PZ72xCpvXIGq5kvmmhAz0vLtJyEdj8s2byLJaNP6Pp9f-1jBvk2gaO0r3efm6SS765RXb2GgjFP5_SZ3TWi7UfTnfI98mZ0hnaBhrf96O1X2HyeUFjSe165X9--xEW7VeK1Ug1gHy6GgruTubw2RSAPJ03Hd4KdBTbW-hQDkvjuzzYIE-rxtH9ij2n2JkMa6QWlH2qnL9N3k0PjvcP080rDukSmWNSlVdWi8xCGA5YzQZXK11ym7PCSu3h3HdMcmxULC0rglOe16WXVgTtiiIUNb9Dtpu28fcIDbC3ZZUxhyRwCmQVJhnBtmqrvdAqIbvDxpmNK3YGMSJnENXxhDwZh8GJMDNSNb5ddyaeSxK5DxNC_zIHArsMwRqoudubgln2hCAGYJPIuCgSos4ZyTgBObzPjzTzk8jlzXMhNS8TwqKRjBJ9bMbNYB4GzcP05mGOX82ElOX9fxF6TK7MJlPz5uXR6wfkan9DjsXHu2T7y2rtH5Ktzq0fRf_5BUhYJHs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determinants+of+human+cerebral+pressure%E2%80%93flow+velocity+relationships%3A+new+insights+from+vascular+modelling+and+Ca2%2B+channel+blockade&rft.jtitle=The+Journal+of+physiology&rft.au=Tzeng%2C+Yu%E2%80%90Chieh&rft.au=Chan%2C+Gregory+S.+H.&rft.au=Willie%2C+Christopher+K.&rft.au=Ainslie%2C+Philip+N.&rft.date=2011-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=589&rft.issue=13&rft.spage=3263&rft.epage=3274&rft_id=info:doi/10.1113%2Fjphysiol.2011.206953&rft.externalDBID=10.1113%252Fjphysiol.2011.206953&rft.externalDocID=TJP4558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |