Bi2Te3‐Based Thermoelectric Modules for Efficient and Reliable Low‐Grade Heat Recovery

Bismuth‐telluride‐based alloy has long been considered as the most promising candidate for low‐grade waste heat power generation. However, optimizing the thermoelectric performance of n‐type Bi2Te3 is more challenging than that of p‐type counterparts due to its greater sensitivity to texture, and th...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 36; no. 26; pp. e2400285 - n/a
Main Authors: Wu, Gang, Zhang, Qiang, Tan, Xiaojian, Fu, Yuntian, Guo, Zhe, Zhang, Zongwei, Sun, Qianqian, Liu, Yan, Shi, Huilie, Li, Jingsong, Noudem, Jacques. G., Wu, Jiehua, Liu, Guo‐Qiang, Sun, Peng, Hu, Haoyang, Jiang, Jun
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bismuth‐telluride‐based alloy has long been considered as the most promising candidate for low‐grade waste heat power generation. However, optimizing the thermoelectric performance of n‐type Bi2Te3 is more challenging than that of p‐type counterparts due to its greater sensitivity to texture, and thus limits the advancement of thermoelectric modules. Herein, the thermoelectric performance of n‐type Bi2Te3 is enhanced by incorporating a small amount of CuGaTe2, resulting in a peak ZT of 1.25 and a distinguished average ZT of 1.02 (300–500 K). The decomposed Cu+ strengthens interlayer interaction, while Ga+ optimizes carrier concentration within an appropriate range. Simultaneously, the emerged numerous defects, such as small‐angle grain boundaries, twin boundaries, and dislocations, significantly suppresses the lattice thermal conductivity. Based on the size optimization by finite element modelling, the constructed thermoelectric module yields a high conversion efficiency of 6.9% and output power density of 0.31 W cm−2 under a temperature gradient of 200 K. Even more crucially, the efficiency and output power little loss after subjecting the module to 40 thermal cycles lasting for 6 days. This study demonstrates the efficient and reliable Bi2Te3‐based thermoelectric modules for broad applications in low‐grade heat harvest. A thermoelectric module with a balanced conversion efficiency of 6.9% and output power density of 0.31 W cm−2 (ΔT = 200 K) is obtained based on the zone‐melted Bi2Te2.7Se0.3 with CuGaTe2 addition. CuGaTe2 not only strengthens the interlayer interaction, but also introduces various defects. Finally, a peak ZT of 1.25 and an average ZT of 1.02 (300–500 K) are achieved.
AbstractList Bismuth‐telluride‐based alloy has long been considered as the most promising candidate for low‐grade waste heat power generation. However, optimizing the thermoelectric performance of n‐type Bi2Te3 is more challenging than that of p‐type counterparts due to its greater sensitivity to texture, and thus limits the advancement of thermoelectric modules. Herein, the thermoelectric performance of n‐type Bi2Te3 is enhanced by incorporating a small amount of CuGaTe2, resulting in a peak ZT of 1.25 and a distinguished average ZT of 1.02 (300–500 K). The decomposed Cu+ strengthens interlayer interaction, while Ga+ optimizes carrier concentration within an appropriate range. Simultaneously, the emerged numerous defects, such as small‐angle grain boundaries, twin boundaries, and dislocations, significantly suppresses the lattice thermal conductivity. Based on the size optimization by finite element modelling, the constructed thermoelectric module yields a high conversion efficiency of 6.9% and output power density of 0.31 W cm−2 under a temperature gradient of 200 K. Even more crucially, the efficiency and output power little loss after subjecting the module to 40 thermal cycles lasting for 6 days. This study demonstrates the efficient and reliable Bi2Te3‐based thermoelectric modules for broad applications in low‐grade heat harvest. A thermoelectric module with a balanced conversion efficiency of 6.9% and output power density of 0.31 W cm−2 (ΔT = 200 K) is obtained based on the zone‐melted Bi2Te2.7Se0.3 with CuGaTe2 addition. CuGaTe2 not only strengthens the interlayer interaction, but also introduces various defects. Finally, a peak ZT of 1.25 and an average ZT of 1.02 (300–500 K) are achieved.
Bismuth‐telluride‐based alloy has long been considered as the most promising candidate for low‐grade waste heat power generation. However, optimizing the thermoelectric performance of n‐type Bi2Te3 is more challenging than that of p‐type counterparts due to its greater sensitivity to texture, and thus limits the advancement of thermoelectric modules. Herein, the thermoelectric performance of n‐type Bi2Te3 is enhanced by incorporating a small amount of CuGaTe2, resulting in a peak ZT of 1.25 and a distinguished average ZT of 1.02 (300–500 K). The decomposed Cu+ strengthens interlayer interaction, while Ga+ optimizes carrier concentration within an appropriate range. Simultaneously, the emerged numerous defects, such as small‐angle grain boundaries, twin boundaries, and dislocations, significantly suppresses the lattice thermal conductivity. Based on the size optimization by finite element modelling, the constructed thermoelectric module yields a high conversion efficiency of 6.9% and output power density of 0.31 W cm−2 under a temperature gradient of 200 K. Even more crucially, the efficiency and output power little loss after subjecting the module to 40 thermal cycles lasting for 6 days. This study demonstrates the efficient and reliable Bi2Te3‐based thermoelectric modules for broad applications in low‐grade heat harvest.
Bismuth-telluride-based alloy has long been considered as the most promising candidate for low-grade waste heat power generation. However, optimizing the thermoelectric performance of n-type Bi2Te3 is more challenging than that of p-type counterparts due to its greater sensitivity to texture, and thus limits the advancement of thermoelectric modules. Herein, the thermoelectric performance of n-type Bi2Te3 is enhanced by incorporating a small amount of CuGaTe2, resulting in a peak ZT of 1.25 and a distinguished average ZT of 1.02 (300-500 K). The decomposed Cu+ strengthens interlayer interaction, while Ga+ optimizes carrier concentration within an appropriate range. Simultaneously, the emerged numerous defects, such as small-angle grain boundaries, twin boundaries, and dislocations, significantly suppresses the lattice thermal conductivity. Based on the size optimization by finite element modelling, the constructed thermoelectric module yields a high conversion efficiency of 6.9% and output power density of 0.31 W cm-2 under a temperature gradient of 200 K. Even more crucially, the efficiency and output power little loss after subjecting the module to 40 thermal cycles lasting for 6 days. This study demonstrates the efficient and reliable Bi2Te3-based thermoelectric modules for broad applications in low-grade heat harvest.Bismuth-telluride-based alloy has long been considered as the most promising candidate for low-grade waste heat power generation. However, optimizing the thermoelectric performance of n-type Bi2Te3 is more challenging than that of p-type counterparts due to its greater sensitivity to texture, and thus limits the advancement of thermoelectric modules. Herein, the thermoelectric performance of n-type Bi2Te3 is enhanced by incorporating a small amount of CuGaTe2, resulting in a peak ZT of 1.25 and a distinguished average ZT of 1.02 (300-500 K). The decomposed Cu+ strengthens interlayer interaction, while Ga+ optimizes carrier concentration within an appropriate range. Simultaneously, the emerged numerous defects, such as small-angle grain boundaries, twin boundaries, and dislocations, significantly suppresses the lattice thermal conductivity. Based on the size optimization by finite element modelling, the constructed thermoelectric module yields a high conversion efficiency of 6.9% and output power density of 0.31 W cm-2 under a temperature gradient of 200 K. Even more crucially, the efficiency and output power little loss after subjecting the module to 40 thermal cycles lasting for 6 days. This study demonstrates the efficient and reliable Bi2Te3-based thermoelectric modules for broad applications in low-grade heat harvest.
Author Noudem, Jacques. G.
Liu, Guo‐Qiang
Zhang, Qiang
Tan, Xiaojian
Fu, Yuntian
Sun, Peng
Li, Jingsong
Guo, Zhe
Liu, Yan
Hu, Haoyang
Shi, Huilie
Wu, Jiehua
Zhang, Zongwei
Wu, Gang
Sun, Qianqian
Jiang, Jun
Author_xml – sequence: 1
  givenname: Gang
  surname: Wu
  fullname: Wu, Gang
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Xiaojian
  orcidid: 0000-0002-6949-9255
  surname: Tan
  fullname: Tan, Xiaojian
  email: tanxiaojian@nimte.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Yuntian
  surname: Fu
  fullname: Fu, Yuntian
  organization: Donghua University
– sequence: 5
  givenname: Zhe
  surname: Guo
  fullname: Guo, Zhe
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Zongwei
  surname: Zhang
  fullname: Zhang, Zongwei
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Qianqian
  surname: Sun
  fullname: Sun, Qianqian
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  organization: Research Institute of Nuclear Power Operation
– sequence: 9
  givenname: Huilie
  surname: Shi
  fullname: Shi, Huilie
  organization: Research Institute of Nuclear Power Operation
– sequence: 10
  givenname: Jingsong
  surname: Li
  fullname: Li, Jingsong
  organization: Research Institute of Nuclear Power Operation
– sequence: 11
  givenname: Jacques. G.
  surname: Noudem
  fullname: Noudem, Jacques. G.
  organization: CRISMAT
– sequence: 12
  givenname: Jiehua
  surname: Wu
  fullname: Wu, Jiehua
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: Guo‐Qiang
  surname: Liu
  fullname: Liu, Guo‐Qiang
  organization: University of Chinese Academy of Sciences
– sequence: 14
  givenname: Peng
  surname: Sun
  fullname: Sun, Peng
  organization: University of Chinese Academy of Sciences
– sequence: 15
  givenname: Haoyang
  surname: Hu
  fullname: Hu, Haoyang
  organization: Chinese Academy of Sciences
– sequence: 16
  givenname: Jun
  surname: Jiang
  fullname: Jiang, Jun
  email: jjun@nimte.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNpdkM1OwkAQgDcGEwG9em7ixUtxuj9t9wioYAIxMXjx0my707ik7eK2SLj5CD6jT-ISDAdPk8l88_cNSK-xDRJyHcEoAqB3StdqRIFyn6TijPQjQaOQgxQ90gfJRChjnl6QQduuAUDGEPfJ28TQFbKfr--JalEHq3d0tcUKi86ZIlhava2wDUrrgoeyNIXBpgtUo4MXrIzKKwwWdue7Z05pDOaoOl8p7Ce6_SU5L1XV4tVfHJLXx4fVdB4unmdP0_Ei3NA4FmEkuUgpKK4TxgB0DlolcanyMhGoUctEyIinsZI5-B1FAf4vGudaKs40pGxIbo9zN85-bLHtstq0BVaVatBu24wBSzkTXCYevfmHru3WNf46TyWUCuG9eEoeqZ2pcJ9tnKmV22cRZAfP2cFzdvKcje-X41PGfgHfknXm
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202400285
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202400285
Genre article
GrantInformation_xml – fundername: International Cooperation Project of Ningbo City
  funderid: 2023H002
– fundername: Postdoctoral Fellowship Program of CPSF
  funderid: GZB20230786
– fundername: Ningbo Science & Technology Innovation 2025 Major Project
  funderid: 2022Z187
– fundername: National Natural Science Foundation of China
  funderid: U21A2079
– fundername: Zhejiang Provincial High‐level Talent Special Support Plan
  funderid: 2020R52032
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMNL
JG9
7X8
ID FETCH-LOGICAL-p2665-1945820a4d73300db0da76fabf75eded97591486a9b0adecc015226bd9a43d083
IEDL.DBID 33P
ISSN 0935-9648
1521-4095
IngestDate Sat Oct 26 04:48:31 EDT 2024
Tue Nov 19 05:25:26 EST 2024
Sat Aug 24 00:43:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2665-1945820a4d73300db0da76fabf75eded97591486a9b0adecc015226bd9a43d083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6949-9255
PQID 3072255009
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_3038435497
proquest_journals_3072255009
wiley_primary_10_1002_adma_202400285_ADMA202400285
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 209
2023; 32
2023; 35
2017; 2
2023; 33
2023; 5
2020; 120
2023; 6
2019; 11
2023; 382
2023; 8
2019; 12
2022; 23
2022; 24
2014; 25
2023; 467
2020; 15
2020; 13
2022; 21
2020; 55
2020; 10
2012; 489
2018; 49
2020; 7
2018; 9
2022; 120
2018; 3
2018; 5
2023; 66
2018; 4
2019; 29
2023; 455
2016; 116
2021; 47
2017; 20
2015; 5
2019; 5
2023; 640
1995
2022; 48
2017; 29
2008; 321
2018; 67
2021; 50
2008; 320
2024; 15
2024; 16
2016; 15
2021; 13
2018; 18
2015; 25
2023; 47
2020; 2020
2016; 3
2022; 4
2017; 10
2021; 17
2022; 9
2021; 19
2017; 140
2020; 23
2019; 172
2016; 9
2022; 18
References_xml – volume: 55
  year: 2020
  publication-title: J. Mater. Science.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2022
  publication-title: Adv. Sci. (Weinheim, Ger.).
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 18
  start-page: 4646
  year: 2018
  publication-title: Cryst. Growth Des.
– volume: 17
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 5
  start-page: 888
  year: 2018
  publication-title: Natl. Sci. Rev.
– volume: 172
  start-page: 88
  year: 2019
  publication-title: Scr. Mater.
– volume: 6
  start-page: 6157
  year: 2023
  publication-title: ACS Appl. Energy Mater.
– volume: 2
  start-page: 62
  year: 2017
  publication-title: Mater. Today Phys.
– volume: 25
  start-page: 966
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 361
  year: 2022
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 455
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 66
  start-page: 3651
  year: 2023
  publication-title: Sci. China Mater.
– volume: 15
  start-page: 1468
  year: 2024
  publication-title: Nat. Commun.
– volume: 21
  start-page: 503
  year: 2022
  publication-title: Nat. Mater.
– volume: 19
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 691
  year: 2016
  publication-title: Nat. Mater.
– volume: 9
  start-page: 3120
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 23
  year: 2020
  publication-title: iScience.
– volume: 47
  year: 2023
  publication-title: Adv. Mater.
– volume: 9
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2022
  publication-title: Chem. Nanostruct. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci. (Weinheim, Ger.).
– volume: 5
  start-page: 321
  year: 2019
  publication-title: J. Materiomics
– volume: 321
  start-page: 1457
  year: 2008
  publication-title: Science.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 140
  start-page: 167
  year: 2017
  publication-title: Energy Convers. Manage.
– volume: 18
  year: 2022
  publication-title: Small.
– volume: 5
  start-page: 3373
  year: 2023
  publication-title: ACS Appl. Electron. Mater.
– volume: 16
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 4
  year: 2022
  publication-title: J. Phys.: Condens. Matter.
– volume: 13
  start-page: 2106
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 467
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 956
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 3106
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 665
  year: 2023
  publication-title: Nat. Energy.
– volume: 320
  start-page: 634
  year: 2008
  publication-title: Science.
– volume: 640
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 50
  start-page: 9022
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 32
  year: 2023
  publication-title: Mater. Today Phys.
– start-page: 407
  year: 1995
  end-page: 440
– volume: 20
  start-page: 452
  year: 2017
  publication-title: Mater. Today.
– volume: 7
  start-page: 1856
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 49
  start-page: 257
  year: 2018
  publication-title: Nano Energy.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 4
  start-page: 208
  year: 2018
  publication-title: J. Materiom.
– volume: 382
  start-page: 921
  year: 2023
  publication-title: Science.
– volume: 25
  start-page: 29
  year: 2015
  publication-title: Prog. Nat. Sci.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 2020
  year: 2020
  publication-title: Research.
– volume: 23
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 24
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 15
  start-page: 2775
  year: 2020
  publication-title: Chem. Asian J.
– volume: 209
  year: 2021
  publication-title: Mater. Des.
– volume: 67
  start-page: 69
  year: 2018
  publication-title: Adv. Phys.
– volume: 47
  start-page: 725
  year: 2021
  publication-title: Ceram. Int.
– volume: 489
  start-page: 414
  year: 2012
  publication-title: Nature.
– volume: 120
  start-page: 7399
  year: 2020
  publication-title: Chem. Rev.
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 92
  year: 2018
  publication-title: Nat. Energy.
SSID ssj0009606
Score 2.5293639
Snippet Bismuth‐telluride‐based alloy has long been considered as the most promising candidate for low‐grade waste heat power generation. However, optimizing the...
Bismuth-telluride-based alloy has long been considered as the most promising candidate for low-grade waste heat power generation. However, optimizing the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2400285
SubjectTerms Bismuth tellurides
Carrier density
conversion efficiency
Crystal defects
CuGaTe2
Energy conversion efficiency
Finite element method
Grain boundaries
Heat recovery
Interlayers
Modules
n‐type bismuth telluride
Thermal conductivity
thermoelectric
Thermoelectricity
Twin boundaries
Title Bi2Te3‐Based Thermoelectric Modules for Efficient and Reliable Low‐Grade Heat Recovery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202400285
https://www.proquest.com/docview/3072255009
https://www.proquest.com/docview/3038435497
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagEwz8IwoFGYk1ahonsT22tKUDRUgUCbFETs6RKkFSNUSIjUfgGXkSzk6blhW2RImj6Hw_39l3nwm54qKDKRpjDme-7_g6NUUAYeqwOAhjwUSSgF26eOB3T6I_MDQ5dRd_xQ9RL7gZy7D-2hi4iov2ijRUgeUNMjWQnjBd5pgq2B4Odr9i3Q3t4Zpms8-RoS-WrI2u1_49_Be-XEepNswMd___g3tkZwExabfSiX2yobMDsr1GPHhInntTb6LZ9-dXD6MYUFSW-WteHYkzTeg4h_JFFxQBLR1YjgkMTVRlQE0Fs2m2orf5O46-mSvQdIT-nJo8Fs3i44g8DgeT65GzOGXBmWFwDpyONFtnrvKBM-a6ELugeJiqOOWBBg2SBxJzplDJ2MVvJgkCCMRsMUjlM0AEd0waWZ7pE0JZmnAtPYVa0cE4p4UXsyQMwNeJ1ACqSVpLKUcLUykidDLoUwKcrCa5rB-jkpudC5XpvDTvMIG4zpe8STwr82hWkXFEFe2yFxlpR7W0o25_3K3vTv8y6IxsmeuqLKxFGm_zUp-TzQLKC6tkP5Tw0vg
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60HtSDb7E-V_AammaTbPbYamvFtghWEC9hk9lAQZPSWsSbP8Hf6C9xNunzKh6TzYQwmce3u7PfAFyJoEpTNM4twV3XcnViigD8xOKR50cBD-IY86WLR9F9Dm4ahianNj0LU_BDzBbcjGfk8do4uFmQrsxZQxXmxEGmCNIJvFVYc32yRnOKgz_MeXf9vL2m2e6zJI1PeRttp7Isv4QwF3Fqnmia2__wiTuwNUGZrFaYxS6s6HQPNhe4B_fhpd53epr_fH3XKZEhI3sZvmVFV5x-zDoZjl_1iBGmZY2cZoKyE1MpMlPEbM5bsXb2QdK3Q4WatSikMzOVJc_4PICnZqN33bImjRasAeVnz6pKs3tmKxcF57aNkY1K-ImKEuFp1CiFJ2na5CsZ2fTOOCYMQbAtQqlcjgTiDqGUZqk-AsaTWGjpKDKMKqU6HTgRj30PXR1LjajKcDpVczjxllFIcYbCikd_qwyXs2Gyc7N5oVKdjc0zPCBo50pRBidXejgo-DjCgnnZCY22w5m2w9pNpza7Ov6L0AWst3qddti-696fwIa5X1SJnULpfTjWZ7A6wvF5bnG__fPXIA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gOjBt1ituoLXYJrdZLPH1rYqPhCsIF7CJrMBQZPSWsSbP8Hf6C9xNmnTetVjHhPC7Dy-2Z39FuBEhg0q0Th3JBfCESa1TQBB6vDYD-KQh0mCxdTFvbx9DNsdS5NT7eIv-SGqCTfrGUW8tg7ex_R0ShqqseANsj2QXujPw6IgLG7Z8zm_m9LuBsXpmna1z1GBCCe0ja53-lv-F8CchalFnumu_f8P12F1jDFZszSKDZgz2SaszDAPbsFT69nrGf79-dWiNIaMrGXwmpdn4jwn7CbH0YsZMkK0rFOQTFBuYjpDZluY7W4rdp2_k_T5QKNhFxTQmS1kyS8-tuGh2-mdXTjjYxacPmVn32kou3bmaoGSc9fF2EUtg1THqfQNGlTSV1Q0BVrFLn0zSQhBEGiLUWnBkSDcDixkeWZ2gfE0kUZ5msyiQYnOhF7Mk8BHYRJlEHUN6hMtR2NfGUYUZSio-DRYNTiuHpOV26ULnZl8ZN_hIQE7oWQNvELnUb9k44hK3mUvstqOKm1HzfZNs7ra-4vQESzdtbvR9eXt1T4s29tli1gdFt4GI3MA80McHRb29gN-atXG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi2Te3%E2%80%90Based+Thermoelectric+Modules+for+Efficient+and+Reliable+Low%E2%80%90Grade+Heat+Recovery&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Gang&rft.au=Zhang%2C+Qiang&rft.au=Tan%2C+Xiaojian&rft.au=Fu%2C+Yuntian&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202400285&rft.externalDBID=10.1002%252Fadma.202400285&rft.externalDocID=ADMA202400285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon