EPR spectroscopic characterization of the manganese center and a free radical in the oxalate decarboxylase reaction: identification of a tyrosyl radical during turnover

Several molecular mechanisms for cleavage of the oxalate carbon-carbon bond by manganese-dependent oxalate decarboxylase have recently been proposed involving high oxidation states of manganese. We have examined the oxalate decarboxylase from Bacillus subtilis by electron paramagnetic resonance in p...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 279; no. 51; pp. 52840 - 52849
Main Authors: Chang, Christopher H, Svedruzic, Drazenka, Ozarowski, Andrzej, Walker, Lee, Yeagle, Gregory, Britt, R David, Angerhofer, Alexander, Richards, Nigel G J
Format: Journal Article
Language:English
Published: United States 17-12-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several molecular mechanisms for cleavage of the oxalate carbon-carbon bond by manganese-dependent oxalate decarboxylase have recently been proposed involving high oxidation states of manganese. We have examined the oxalate decarboxylase from Bacillus subtilis by electron paramagnetic resonance in perpendicular and parallel polarization configurations to test for the presence of such species in the resting state and during enzymatic turnover. Simulation and the position of the half-field Mn(II) line suggest a nearly octahedral metal geometry in the resting state. No spectroscopic signature for Mn(III) or Mn(IV) is seen in parallel mode EPR for samples frozen during turnover, consistent either with a large zero-field splitting in the oxidized metal center or undetectable levels of these putative high-valent intermediates in the steady state. A narrow, featureless g = 2.0 species was also observed in perpendicular mode in the presence of substrate, enzyme, and dioxygen. Additional splittings in the signal envelope became apparent when spectra were taken at higher temperatures. Isotopic editing resulted in an altered line shape only when tyrosine residues of the enzyme were specifically deuterated. Spectral processing confirmed multiple splittings with isotopically neutral enzyme that collapsed to a single prominent splitting in the deuterated enzyme. These results are consistent with formation of an enzyme-based tyrosyl radical upon oxalate exposure. Modestly enhanced relaxation relative to abiological tyrosyl radicals was observed, but site-directed mutagenesis indicated that conserved tyrosine residues in the active site do not host the unpaired spin. Potential roles for manganese and a peripheral tyrosyl radical during steady-state turnover are discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M402345200