Analyzing Dropout in Alcohol Recovery Programs: A Machine Learning Approach

: Retention in treatment is crucial for the success of interventions targeting alcohol use disorder (AUD), which affects over 100 million people globally. Most previous studies have used classical statistical techniques to predict treatment dropout, and their results remain inconclusive. This study...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical medicine Vol. 13; no. 16; p. 4825
Main Authors: Collin, Adele, Ayuso-Muñoz, Adrián, Tejera-Nevado, Paloma, Prieto-Santamaría, Lucía, Verdejo-García, Antonio, Díaz-Batanero, Carmen, Fernández-Calderón, Fermín, Albein-Urios, Natalia, Lozano, Óscar M, Rodríguez-González, Alejandro
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 15-08-2024
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:: Retention in treatment is crucial for the success of interventions targeting alcohol use disorder (AUD), which affects over 100 million people globally. Most previous studies have used classical statistical techniques to predict treatment dropout, and their results remain inconclusive. This study aimed to use novel machine learning tools to identify models that predict dropout with greater precision, enabling the development of better retention strategies for those at higher risk. : A retrospective observational study of 39,030 (17.3% female) participants enrolled in outpatient-based treatment for alcohol use disorder in a state-wide public treatment network has been used. Participants were recruited between 1 January 2015 and 31 December 2019. We applied different machine learning algorithms to create models that allow one to predict the premature cessation of treatment (dropout). With the objective of increasing the explainability of those models with the best precision, considered as black-box models, explainability technique analyses were also applied. : Considering as the best models those obtained with one of the so-called black-box models (support vector classifier (SVC)), the results from the best model, from the explainability perspective, showed that the variables that showed greater explanatory capacity for treatment dropout are previous drug use as well as psychiatric comorbidity. Among these variables, those of having undergone previous opioid substitution treatment and receiving coordinated psychiatric care in mental health services showed the greatest capacity for predicting dropout. : By using novel machine learning techniques on a large representative sample of patients enrolled in alcohol use disorder treatment, we have identified several machine learning models that help in predicting a higher risk of treatment dropout. Previous treatment for other substance use disorders (SUDs) and concurrent psychiatric comorbidity were the best predictors of dropout, and patients showing these characteristics may need more intensive or complementary interventions to benefit from treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2077-0383
2077-0383
DOI:10.3390/jcm13164825